
Theory of Computing

Lecture 14

MAS 714

Hartmut Klauck

Part II Overview

• Problems that cannot be solved efficiently

– P vs. NP

– Time Hierarchy

• Problems that cannot be solved at all

– Computability

• Weaker models of computation

– Finite Automata

Languages

• Definition:

– An alphabet is a finite set of symbols

– ¡* is the set of all finite sequences/strings over the
alphabet ¡

– A language over alphabet ¡ is a subset of ¡*

– A machine decides a language L if on input x it outputs
1 if x2L and 0 otherwise

• A complexity class is a set of languages that can
be computed given some restricted resources

The Class P

• The class P consists of all languages that can
be decided in polynomial time

• Which machine model?

– RAM’s with the logarithmic cost measure

– Simpler: Turing machines

– Polynomial size circuits (with simple descriptions)

The Class P

• For technical reasons P contains only decision
problems

• Example: Sorting can be done in polynomial
time, but is not a language

• Decision version:

– ElementDistinctness={x1,…, xn: the xi are pairwise
distinct strings of length n}

• ElementDistinctness2P

The Class P

• Problems solvable in polynomial time?
– Sorting

– Minimum Spanning Trees

– Matching

– Max Flow

– Shortest Path

– Linear Programming

– Many more

• Decision version example: {G,W,K: there is a
spanning tree of weight at most K in G}

Turing Machine

• Defined by Turing in 1936 to formalize the notion
of computation

• A Turing machine has a finite control and a 1-
dimensional storage tape it can access with its
read/write head

• Operation: the machine reads a symbol from the
tape, does an internal computation and writes
another symbol to the tape, moves the head

Turing Machine

• A Turing machine is a 8-tuple
(Q, ¡, b, §, q0, A,R, ±)

• Q: set of states of the machine
• ¡: tape alphabet
• b2¡: blank symbol
• §µ¡-{b}: input alphabet
• q02 Q: initial state
• A,R µ Q: accepting/rejecting states
• ±: Q- (A[R) £ ¡ → Q£¡£{left,stay,right}:

transition function

Operation

• The tape consists of an infinite number of cells
labeled by all integers

• In the beginning the tape contains the input
x2§* starting at tape cell 0

• The rest of the tape contains blank symbols

• The machine starts in state q0

• The head is on cell 0 in the beginning

Operation

• In every step the machine reads the symbol z
at the position of the head

• Given z and the current state q it uses ± to
determine the new state, the symbol that is
written to the tape and the movement of the
head
– left, stay, right

• If the machine reaches a state in A it stops and
accepts, on states in R it rejects

Example Turing Machine

• To compute the parity of x2{0,1}*

• Q={q0, q1, qa, qr}

• ¡={0,1,b}

• ±:
q0 ,1 → q1,b, right
q0,0 → q0,b, right
q1,1 → q0,b, right
q1,0 → q1,b, right
q1, b → qa
q0,b → qr

Example

• The Turing machine here only moves right and
does not write anything useful

– It is a finite automaton

Correctness/Time

• A TM decides L if it accepts all x2L and rejects all
x not in L (and halts on all inputs)

• The time used by a TM on input x is the number
of steps [evaluations of ±] before the machine
reaches a state in A or R

• The time complexity of a TM M is the function tM
that maps n to the largest time used on any input
in § n

• The time complexity of L is upper bounded by
g(n) if there is a TM M that decides L and has
tM(n)· O(g(n))

Notes

• DTIME(f(n)) is the class of all languages that
have time complexity at most O(f(n))

• P is the class of languages L such that the time
complexity of L can be upper bounded by a
fixed polynomial in n [with a fixed highest
power of n appearing in p]

• There are languages for which there is no
asymptotically fastest TM [Speedup theorem]

Space

• The space used by a TM M on an input x is the
number of cells visited by the head

• The space complexity of M is the function sM

mapping n to the largest space used on x2§
n

• The space complexity of L is upper bounded
by g(n) if there is a TM that decides L and
sM(n)=O(g(n))

Facts

• A Turing machine can simulate a RAM with log
cost measure such that
– polynomial time RAM gives a polynomial time TM

• A log-cost RAM can simulate a TM
– Store the tape in the registers
– Store the current state in a register
– Each register stores a symbol or state [O(1) bits]
– Store also the head position in a register [log sM bits]
– Compute the transition function by table lookup

• Hence the definition of P is robust

Criticism

• P is supposed to represent efficiently solvable
problems

• P contains only languages
– Can identify a problem with many outputs with a set of

languages (one for each output bit)

• Problems with time complexity n1000 are deemed easy
while problems with time complexity 2n/100000 hard

• Answer: P is mainly a theoretical tool
• In practice such problems don’t seem to arise
• Once a problem is known to be in P we can start

searching for more efficient algorithms

Criticism

• Turing machines might not be the most powerful
model of computation

• All computers currently built can be simulated
efficiently
– Small issue: randomization

• Some models have been proposed that are faster, e.g.
analogue computation
– Usually not realistic models

• Exception: Quantum computers
– Quantum Turing machines are probably faster than Turing

machines for some problems

Why P?

• P has nice closure properties

• Example: closed under calling subroutines:

– Suppose R2P

– If there is a polynomial time algorithm that solves
L given a free subroutine that computes R, then L
is also in P

Variants of TM

• Several tapes

– Often easier to describe algorithms

• Example: Palindrome={xy: x is y in reverse}

• Compute length, copy x on another tape, compare x
and y in reverse

• Any 1-tape TM needs quadratic time

– Any TM with O(1) tapes and time T(n) can be
simulated by a 1-tape TM using time O(T(n)2)

