# Theory of Computing

Lecture 10

**MAS 714** 

Hartmut Klauck

#### **Network Flows**

- A flow network is a directed graph G=(V,E) with nonegative edge weights C(u,v), called capacities
  - nonedges have capacity 0
- There is a source s and a sink t
- We assume that for all v there is a path from s to v and from v to t
- A *flow* in G is a mapping f from V×V to the reals:
  - For all u,v:  $f(u,v) \le C(u,v)$  [capacity constraint]
  - For all u,v: f(u,v) = -f(v,u) [skew symmetry]
  - For all u≠s,t:  $\sum_{v} f(u,v)=0$  [flow conservation]
- The *value* of a flow f is  $|f| = \sum_{v} f(s,v)$
- The Max Flow problem consists of finding the maximum value of any flow for G,C,s,t

#### Motivation

- The Max Flow problem models the situation where commodities need to be transported through a network with limited capacities
- Application to other problems

# Application: Matching

- For simplicity we consider the bipartite matching problem
- $G=(L \cup R,E)$  is a bipartite graph
- A matching is a set M⊆ E, in which no two edges share a vertex
- A perfect matching (assuming |L|=|R|) has |L| edges
- Edges have weights W(u,v)
- A maximum matching is a matching with the maximum total edge weight

## Flow network for bipartite matching

- G=(L∪R,E) is a bipartite graph (unweighted)
- Add two extra vertices s, t
  - connect s to all vertices of L, weight 1
  - keep the edges in E (directed from L to R), weight 1
  - connect all vertices in R to t, weight 1
- Then the maximum flow in the new graph is equal to the maximum matching
  - We will prove this later, it is obvious that a matching leads to a flow but not the other way around

### Back to flows: remarks

- Having several sources and sinks can be modeled by using extra edges
- Nonadjacent u,v have C(u,v)=0
- Notation: For vertex sets X,Y denote  $f(X,Y)=\sum_{x\in X, y\in Y} f(x,y)$
- Similarly define C(X,Y)
- $C(u,v)\neq C(v,u)$  is possible!

#### An observation

N=(G,C,s,t) is a flow network, f a flow. Then

− For all 
$$X\subseteq V$$
:  $f(X,X)=0$ 

- For all 
$$X,Y \subseteq V$$
:  $f(X,Y) = -f(Y,X)$ 

– For all X,Y,Z with X∩Y= $\emptyset$ :

$$f(X \cup Y,Z)=f(X,Z)+f(Y,Z)$$

#### The Ford Fulkerson Method

- To start set f(u,v)=0 for all pairs u,v
- We will look for augmenting paths. i.e., paths in G along which we can increase f
- Repeat until there is no augmenting path

## Augmenting paths

- Setting C(u,v)=0 for nonedges allows us to assume that the graph is complete
- Consider simple paths from s to t
- Definition: If C(u,v)-f(u,v)>0 for all edges on the path then the path is augmenting
  - Note: C(u,v)=0 and f(u,v)<0 possible
- Definition: capacity C(p) of a path p is the minimum capacity of any edge on the path

#### Residual Network

- Given: flow network G,C,s,t, and flow f
- "Remove" f, to get the residual network
- Formally: Set  $C_f(u,v)=C(u,v)-f(u,v)$

- G with capacities C<sub>f</sub> is a new flow network
- Note: C<sub>f</sub>(u,v)>C(u,v) is possible

#### Residual Network

#### Lemma:

- N=(G,C,s,t) flow network, f flow
- $N_f=(G,C_f,s,t)$  the residual network
- f' a flow in N<sub>f</sub>
- f+f' defined by (f+f')(u,v)=f(u,v)+f'(u,v)
- Then f+f' is a flow in N with value |f+f'|=|f|+|f'|

#### **Proof:**

- (f+f')(u,v)=f(u,v)+f'(u,v)
- Statement about |f+f'| trivial
- Have to check that f+f' is really a flow
  - Skew Symmetry: (f+f')(u,v)=f(u,v)+f'(u,v)=-f(v,u)-f'(v,u)=-(f+f')(v,u)
  - Capacity: (f+f')(u,v)=f(u,v)+f'(u,v) $\leq f(u,v)+C_f(u,v)=f(u,v)+C(u,v)-f(u,v)=C(u,v)$
  - Flow conservation:

$$\sum_{v} (f+f')(u,v) = \sum_{v} f(u,v) + \sum_{v} f'(u,v) = 0 + 0 = 0$$

## **Augmenting Paths**

- Flow network N and flow f
- Find the residual network N<sub>f</sub>
- For a path p from s to t the residual capacity is C<sub>f</sub>(p)=min{C<sub>f</sub>(u,v): (u,v) on p}
- Search an augmenting path,
  - i.e. path s to t with  $C_f(p)>0$
- Idea: remove edges with capacity 0, perform
   BFS from s until t is found

## **Augmenting Paths**

- Let p be an augmenting path
- Set  $f_p(u,v)=$ 
  - $C_f(p)$  if (u,v) on p
  - $-C_f(p)$ , if (v,u) on p
  - 0 otherwise
- Claim: then  $f_p$  is a flow in the residual network
- And f+f<sub>p</sub> is a flow with value |f|+|f<sub>p</sub>| in N
- Proof by checking flow conditions

#### Ford Fulkerson

- 1. Input: flow network N=(G,C,s,t)
- 2. Set f(u,v)=0 for all pairs u,v
- 3. While there is an augmenting path p in  $N_f$ :
  - 1. Compute  $C_f(p)$
  - 2. For all edges u,v on p:
    - 1. set  $f(u,v) := f(u,v) + C_f(p)$
    - 2. set f(v,u) := -f(u,v)
- 4. Output f

## Running time

- Computing augmenting paths takes time O(m+n)
- What is the number of iterations?
- Depending on the choice of paths (and the capacities) FF need not terminate at all!
- Running time can be  $\Theta(|f| m)$  where f is the max flow and capacities are integers
  - For integer weights no more than O(|f|) iterations are needed (augmenting paths add flow 1 at least)
  - Example that  $\Omega(|f|)$  iterations can happen

# Running time

Network where 2M iterations can happen:



# Improving the running time

Improvement, choose the augmenting paths with BFS

#### Claim:

- If in each iteration an augmenting path in N<sub>f</sub> is chosen by BFS then running time is O(nm<sup>2</sup>)
- Choosing paths by BFS means choosing augmenting paths with the smallest number of edges
- Proof: Later
- Edmonds-Karp algorithm

#### Correctness of Ford Fulkerson

- Tool: the Max-flow Min-cut Theorem
- This will imply that a flow is maximum iff there is no augmenting path
- Hence the output of Ford Fulkerson is correct

 The theorem is an example of duality/minmax theorems

#### Min Cuts

- s-t Min Cut problem: input is a flow network
- An s-t cut is a partition of V into L,R with s∈ L and t∈ R
- The capacity of the cut is  $C(L,R)=\sum_{u,v} C(u,v)$ , where  $u \in L$  and  $v \in R$
- The output is an s-t cut of minimum capacity

#### Max-Flow Min-Cut Theorem

#### Theorem

N=(G,C,s,t) flow network, f a flow

- The following statements are equivalent:
  - 1. f is a maximum flow
  - 2. N<sub>f</sub> has no augmenting path
  - 3. |f|=C(L,R) for some s-t cut L,R

## **Proof**

#### Lemma

- Let f be a flow and L,R an s-t cut
- Then f(L,R)=|f|

#### • Proof:

- f(L-{s},V)=0 by flow conservation
- f(L,R)=f(L,V)-f(L,L) [from earlier observation]
- =f(L,V)
- = $f({s},V)+f(L-{s},V)$
- = $f({s},V)$
- = | f |

## **Proof**

Lemma

 $|f| \le C(L,R)$  for every flow f and every s-t cut L,R

- Proof
  - $|f| = f(L,R) \le C(L,R)$

 Hence the maximum value of |f| is upper bounded by C(L,R) for any s-t cut L,R

## Proof of the theorem

- 1 to 2:
  - Assume f is max but  $N_f$  has an augmenting path p, so  $f+f_p$  is larger, contradiction
- 2 to 3:
  - Assume N<sub>f</sub> has no augmenting path
  - $-|f| \le C(L,R)$  by the Lemma
  - Construct a cut:
    - L: vertices reachable from s in N<sub>f</sub>
    - R=V-L
  - f(L,R)=|f|
  - All edges in G from L to R satisfy:
    - f(u,v)=C(u,v), otherwise they would be edges in N<sub>f</sub>
    - Hence |f|=f(L,R)=C(L,R)
- 3 to 1:
  - $-|f| \le C(L,R)$ . IF |f| = C(L,R), then f must be maximum flow

### Correctness of Ford-Fulkerson

This proves that Ford Fulkerson computes a maximum flow

# Duality

- The value of related maximization and minimization problems coincides
- Similar example: Linear Programming
- Useful to prove bounds:
  - To show that there is no larger flow than f it is enough to point out a cut with small capacity

## Running Time

- We assume that augmenting paths are found by BFS
- Then:
  - Number of iterations is at most O(mn)
- Ford-Fulkerson finds maximum flows in time O(m<sup>2</sup>n)

#### Number of iterations

#### Lemma:

- Let N be a flow network
- For all v≠s,t:
  - The distance from s to v (number of edges) increases monotonically when changing N to a residual network

## **Proof**

- Assume the distance  $\delta(s,v)$  decreases in an iteration
- f is the flow before the iteration, f' afterwards
- $\delta(s,v)$  is the distance in  $N_f$ ;  $\gamma(s,v)$  in  $N_f$
- v has min.  $\delta(s,v)$  among all v with  $\gamma(s,v) < \delta(s,v)$  (\*)
- p: path  $s \rightarrow u \rightarrow v$  shortest path in  $N_{f'}$ 
  - $\gamma(s,u) = \gamma(s,v)-1$
  - $-\delta(s,u) \leq \gamma(s,u) \qquad (*)$
  - (u,v) is no edge in  $N_f$ 
    - Assume (u,v)∈ N<sub>f</sub>
    - $\delta(s,v) \leq \delta(s,u) + 1$
    - $\leq \gamma(s,u)+1$
    - $=\gamma(s,v)$  contradiction

### **Proof**

- (u,v) edge in N<sub>f</sub>
   but no edge in N<sub>f</sub>
- In the iteration the flow from v to u is increased
- There is an augmenting path path in N<sub>f</sub> with edge (v,u)
- I.e., a shortest path from s to u with edge (v,u) at the end exists in  $N_{\rm f}$
- Hence:

```
-\delta(s,v)
=\delta(s,u)-1
\leq \gamma(s,u)-1
=\gamma(s,v)-2
```

• But we assumed  $\gamma(s,v) < \delta(s,v)$ 

#### Number of iterations

#### Theorem:

There are at most mn iterations

#### Proof:

- Edges in N<sub>f</sub> are critical, if the capacity of the augmenting path p is the capacity of (u,v) in N<sub>f</sub>
- Critical edges are removed, i.e. are not in N<sub>f'</sub>
- Every augmenting path has at least 1 critical edge
- Claim: an edge can be critical at most n/2-1 times
- Since at most 2m edges are used there can be at most nm iterations

### Proof of the claim

- (u,v) critical in  $N_f$  for the first time:  $\delta(s,v)=\delta(s,u)+1$
- (u,v) vanishes in the iteration
- (u,v) can only reappear if the flow from u to v is reduced
- Then (v,u) is on an augmenting path; f' the flow at this time
- $\gamma(s,u)=\gamma(s,v)+1$
- $\delta(s,v) \leq \gamma(s,v)$
- Hence:
  - $\gamma(s,u)=\gamma(s,v)+1$
  - $\geq \delta(s,v)+1$
  - $=\delta(s,u)+2$
- Distance s to u increases by 2, before (u,v) can be critical
- Distance is integer between 0 and n-1
- (u,v) can be critical at most n/2-1 times.

#### Conclusion

 The Edmonds-Karp implementation of the Ford-Fulkerson approach computes maximum flows in time O(m<sup>2</sup>n)