Theory of Computing

Lecture 10
MAS 714

Hartmut Klauck

Network Flows

A flow network is a directed graph G=(V,E) with nonegative
edge weights C(u,v), called capacities

— nonedges have capacity O
There is a source s and a sink t

We assume that for all v there is a path from s to vand from v
tot

A flow in G is a mapping f from VXV to the reals:
— Forallu,v: f(u,v)<C(u,v) [capacity constraint]
— Forallu,v: f(u,v) =-f(v,u) [skew symmetry]
— Foralluzs,t: 2, f(u,v)=0 flow conservation]
The value of a flow fis |f|=2, f(s,v)

The Max Flow problem consists of finding the maximum value
of any flow for G,C,s,t

Motivation

 The Max Flow problem models the situation
where commodities need to be transported
through a network with limited capacities

* Application to other problems

Application: Matching

For simplicity we consider the bipartite matching
problem

G=(LUR,E) is a bipartite graph
A matching is a set MC E, in which no two edges
share a vertex

A perfect matching (assuming |L|=|R|) has |L]
edges

Edges have weights W(u,v)

A maximum matching is a matching with the
maximum total edge weight

Flow network for bipartite matching

 G=(LUR,E) is a bipartite graph (unweighted)
 Add two extra vertices s, t
— connect s to all vertices of L, weight 1
— keep the edges in E (directed from L to R), weight 1
— connect all verticesin Rto t, weight 1
 Then the maximum flow in the new graph is

equal to the maximum matching

— We will prove this later, it is obvious that a matching
leads to a flow but not the other way around

Back to flows: remarks

Having several sources and sinks can be
modeled by using extra edges

Nonadjacent u,v have C(u,v)=0

Notation: For vertex sets X,Y denote
f(X,Y)=ZX€ X, ye Y f(x,y)

Similarly define C(X,Y)

C(u,v)# C(v,u) is possible!

An observation

* N=(G,C,s,t) is a flow network, f a flow. Then

— For all XCV: f(X,X)=0
— For all X,YC V: f(X,Y)=-f(Y,X)
— For all X)Y,Z with XNY=0:

F(XUY,Z)=F(X,2)+f(Y,2)

The Ford Fulkerson Method

e To start set f(u,v)=0 for all pairs u,v

 We will look for augmenting paths. i.e., paths
in G along which we can increase f

* Repeat until there is no augmenting path

Augmenting paths

Setting C(u,v)=0 for nonedges allows us to
assume that the graph is complete

Consider simple paths from sto t
Definition: If C(u,v)-f(u,v)>0 for all edges on
the path then the path is augmenting

— Note: C(u,v)=0 and f(u,v)<0 possible
Definition: capacity C(p) of a path p is the
minimum capacity of any edge on the path

Residual Network

Given: flow network G,C,s,t, and flow f
,Remove”f, to get the residual network
Formally: Set Ci(u,v)=C(u,v)-f(u,v)

G with capacities C; is a new flow network
Note: C(u,v)>C(u,v) is possible

Residual Network

Lemma:
* N=(G,C,s,t) flow network, f flow
* N:=(G,C,s,t) the residual network
* f"aflowin N;
e f+f’ defined by (f+f‘)(u,v)=f(u,v)+f(u,v)
 Then f+fis a flow in N with value |f+f|=|f|+]|f’|

Proof:

* (f+f°)(u,v)=f(u,v)+f"(u,v)
e Statement about |f+f’| trivial

 Have to check that f+f is really a flow
— Skew Symmetry: (f+f)(u,v)=f(u,v)+f'(u,v)
=-f(v,u)-f'(v,u)=-(f+f)(v,u)
— Capacity: (f+f)(u,v)=f(u,v)+f‘(u,v)
< f(u,v)+C(u,v) = f(u,v)+C(u,v)-f(u,v)=C(u,v)
— Flow conservation:
2., () (u,v)=2, f(u,v)+2, f(u,v) =0+0=0

Augmenting Paths

-low network N and flow f
-ind the residual network N;

~or a path p from s to t the residual capacity is
Cip)=min{C¢(u,v): (u,v) on p}

Search an augmenting path,

—i.e. path s to t with C{(p)>0

ldea: remove edges with capacity O, perform
BFS from s until t is found

Augmenting Paths

Let p be an augmenting path

Set f (u,v)=

* Cdp) if(uyv) onp

* -Cp), if(vu)onp

* 0 otherwise

Claim: then f, is a flow in the residual network
And f+f is a flow with value [f[+]f,] in N

Proof by checking flow conditions

Ford Fulkerson

1. Input: flow network N=(G,C,s,t)
2. Set f(u,v)=0 for all pairs u,v

3. While there is an augmenting path p in N

1. Compute Ci(p)

2. For all edges u,v on p:
1. set f(u,v):=f(u,v)+Cp)
2. set f(v,u):=-f(u,v)

4. Output f

Running time

Computing augmenting paths takes time O(m+n)
What is the number of iterations?

Depending on the choice of paths (and the
capacities) FF need not terminate at all!

Running time can be O(|f| m) where fis the max
flow and capacities are integers

— For integer weights no more than O(|f])
iterations are needed (augmenting paths add
flow 1 at least)

— Example that QQ(|f]|) iterations can happen

Running time

* Network where 2M iterations can happen:

jx) | ot

Improving the running time

Improvement, choose the augmenting paths
with BFS
Claim:

— If in each iteration an augmenting path in N is
chosen by BFS then running time is O(nm?)

— Choosing paths by BFS means choosing
augmenting paths with the smallest number of
edges

Proof: Later
Edmonds-Karp algorithm

Correctness of Ford Fulkerson

Tool: the Max-flow Min-cut Theorem

This will imply that a flow is maximum iff
there is no augmenting path

Hence the output of Ford Fulkerson is correct

The theorem is an example of duality/min-
max theorems

Min Cuts

s-t Min Cut problem: input is a flow network

An s-t cut is a partition of Vinto L,R withse L
and te R

The capacity of the cut is C(L,R)=2, , C(u,v),
where u€ Land ve R

The output is an s-t cut of minimum capacity

Max-Flow Min-Cut Theorem

* Theorem

— N=(G,C,s,t) flow network, f a flow

— The following statements are equivalent:
1. fisa maximum flow

2. N¢has no augmenting path
3. |f|=C(L,R) for some s-t cut L,R

Proof

* Lemma
— Let f be a flow and L,R an s-t cut
— Then f(L,R)=|f]
* Proof:
e f(L-{s},V)=0 by flow conservation
* f(L,R)=f(L,V)-f(L,L) [from earlier observation]
e =f(L,V)
 =f({s},V)+f(L-{s},V)
« =f({s}V)
* =|f|

Proof

* Lemma
|f| < C(L,R) for every flow f and every s-t cut L,R

* Proof
* |f|=f(L,R) < C(L,R)

* Hence the maximum value of |f| is upper
bounded by C(L,R) for any s-t cut L,R

Proof of the theorem

e 1to2:

— Assume f is max but N¢ has an augmenting path p, so f+f is
larger, contradiction

e 210 3:

— Assume N; has no augmenting path

— |f| < C(L,R) by the Lemma

— Construct a cut:
* L: vertices reachable from s in N;
¢ R=V-L

— f(L,R)=|f]

— All edges in G from L to R satisfy:
* f(u,v)=C(u,v), otherwise they would be edges in N;
e Hence |f|=f(L,R)=C(L,R)

* 3tol:
— |f| < C(L,R). IF |f|=C(L,R), then f must be maximum flow

Correctness of Ford-Fulkerson

* This proves that Ford Fulkerson computes a
maximum flow

Duality

* The value of related maximization and
minimization problems coincides

* Similar example: Linear Programming
e Useful to prove bounds:

— To show that there is no larger flow than f it is
enough to point out a cut with small capacity

Running Time

 We assume that augmenting paths are found
by BFS

* Then:

— Number of iterations is at most O(mn)

 Ford-Fulkerson finds maximum flows in time
O(m?n)

Number of iterations

* Lemma:
— Let N be a flow network
— For all v#s,t:

* The distance from s to v (hnumber of edges) increases
monotonically when changing N to a residual network

Proof

Assume the distance o(s,v) decreases in an
iteration

fis the flow before the iteration, f‘ afterwards
o(s,v) is the distance in Ng; y(s,v) in N;.

v has min. o(s,v) among all v with y(s,v)<o(s,v) (*)
p: path s— u— v shortest path in N;.

— yls,u) = yis,v)-1
— 0Ofs, u) < y(s,u) (*)
(u v) is no edge in N;
* Assume (u,v)E N;
* 8(s,v)<8(s,u)+1
. <7v(s,u)+1
=y(s,v) contradiction

Proof

(u,v) edge in N.. but no edge in N;
In the iteration the flow from v to u is increased
There is an augmenting path path in N; with edge (v,u)

l.e., a shortest path from s to u with edge (v,u) at the
end exists in N;

Hence:
— 0O(s,v)

= 0O(s,u)-1
< vy(s,u)-1

= 'Y(S,V)'Z
But we assumed y(s,v)<o(s,Vv)

Number of iterations

e Theorem:
— There are at most mn iterations
 Proof:

— Edges in N; are critical, if the capacity of the
augmenting path p is the capacity of (u,v) in N,

— Critical edges are removed, i.e. are not in N¢
— Every augmenting path has at least 1 critical edge
— Claim: an edge can be critical at most n/2-1 times

— Since at most 2m edges are used there can be at
most nm iterations

Proof of the claim

(u,v) critical in N¢ for the first time:
o(s,v)=0(s,u)+1

(u,v) vanishes in the iteration
(u,v) can only reappear if the flow from u to v is reduced
Then (v,u) is on an augmenting path; f’ the flow at this time
v(s,u)=y(s,v)+1

3(5,v)<y(s,v)
Hence:

" y(s,u)=y(s,v)+1

= >9(s,v)+1

= =3(s,u)+2
Distance s to u increases by 2, before (u,v) can be critical
Distance is integer between 0 and n-1
(u,v) can be critical at most n/2-1 times.

Conclusion

* The Edmonds-Karp implementation of the
Ford-Fulkerson approach computes maximum
flows in time O(m?n)

