Theory of Computing

Lecture 11 MAS 714 Hartmut Klauck

Network Flows

- A *flow network* is a directed graph G=(V,E) with nonegative edge weights C(u,v), called *capacities*
 - nonedges have capacity 0
- There is a *source* s and a *sink* t
- We assume that for all v there is a path from s to v and from v to t
- A *flow* in G is a mapping f from V×V to the reals:
 - For all u,v: $f(u,v) \le C(u,v)$ [capacity constraint]
 - For all u,v: f(u,v) = -f(v,u) [skew symmetry]
 - For all $u \neq s,t$: $\sum_{v} f(u,v)=0$ [flow conservation]
- The *value* of a flow f is $|f| = \sum_{v} f(s,v)$
- The *Max Flow problem* consists of finding the maximum value of any flow for G,C,s,t

Remarks

- Having several sources and sinks can be modeled by using extra edges
- Nonadjacent u,v have C(u,v)=0
- Notation: For vertex sets X,Y denote $f(X,Y)=\sum_{x \in X, y \in Y} f(x,y)$
- Similarly define C(X,Y)
- $C(u,v) \neq C(v,u)$ is possible!

An observation

- N=(G,C,s,t) is a flow network, f a flow. Then
 - For all X \subseteq V: f(X,X)=0
 - For all X,Y \subseteq V: f(X,Y) = -f(Y,X)

- For all X,Y,Z with $X \cap Y = \emptyset$:

 $f(X \cup Y,Z) = f(X,Z) + f(Y,Z)$

The Ford Fulkerson Method

- To start set f(u,v)=0 for all pairs u,v
- We will look for augmenting paths. i.e., paths in G along which we can increase f
- Repeat until there is no augmenting path

Augmenting paths

- Setting C(u,v)=0 for nonedges allows us to assume that the graph is complete
- Consider *simple* paths from s to t
- And a given flow f
- Definition: If C(u,v)-f(u,v)>0 for all edges on the path then the path is *augmenting* – Note: C(u,v)=0 and f(u,v)<0 possible

• **Definition:** capacity C(p) of a path p is the minimum capacity of any edge on the path

Residual Network

- Given: flow network G,C,s,t, and flow f
- "Remove" f, to get the residual network
- Formally: Set C_f(u,v)=C(u,v)-f(u,v)

- G with capacities C_f is a new flow network
- Note: C_f(u,v)>C(u,v) is possible

Residual Network

Lemma:

- N=(G,C,s,t) flow network, f flow
- N_f=(G,C_f,s,t) the residual network
- f' a flow in N_f
- f+f' defined by (f+f')(u,v)=f(u,v)+f'(u,v)
- Then f+f' is a flow in N with value |f+f'|=|f|+|f'|

Augmenting Paths

- Flow network N and flow f
- Find the residual network N_f
- For a path p from s to t the residual capacity is C_f(p)=min{C_f(u,v): (u,v) on p}
- Search an augmenting path,

- i.e. path s to t with C_f(p)>0

 Idea: remove edges with capacity 0, perform BFS from s until t is found

Augmenting Paths

- Let p be an augmenting path
- Set f_p(u,v)=
 - C_f(p) if (u,v) on p
 - -C_f(p), if (v,u) on p
 - 0 otherwise
- **Claim:** then f_p is a flow in the residual network
- And $f+f_p$ is a flow with value $|f|+|f_p|$ in N
- Proof by checking flow conditions

Ford Fulkerson

- 1. Input: flow network N=(G,C,s,t)
- 2. Set f(u,v)=0 for all pairs u,v
- 3. While there is an augmenting path p in N_f :
 - 1. Compute C_f(p)
 - 2. For all edges u,v on p:
 - 1. set $f(u,v):=f(u,v)+C_{f}(p)$
 - 2. set f(v,u):=-f(u,v)
- 4. Output f

Running time

- Computing augmenting paths takes time O(m+n)
- What is the number of iterations?
- Depending on the choice of paths (and the capacities) FF need not terminate at all!
- Running time can be Θ(|f| m) where f is the max flow and capacities are integers
 - For integer weights no more than O(|f|) iterations are needed (augmenting paths add flow 1 at least)
 - Example that $\Omega(|f|)$ iterations can happen

Improving the running time

- Improvement, choose the augmenting paths with BFS
- Claim:
 - If in each iteration an augmenting path in N_f is chosen by BFS then running time is O(nm²)
 - Choosing paths by BFS means choosing augmenting paths with the *smallest number of edges*
- Proof: Later
- Edmonds-Karp algorithm

Correctness of Ford Fulkerson

- Tool: the Max-flow Min-cut Theorem
- This will imply that a flow is maximum iff there is no augmenting path
- Hence the output of Ford Fulkerson is correct

 The theorem is an example of duality/minmax theorems

Min Cuts

- s-t Min Cut problem: input is a flow network
- An s-t cut is a partition of V into L,R with s \in L and t \in R
- The capacity of the cut is $C(L,R)=\sum_{u,v} C(u,v)$, where $u \in L$ and $v \in R$
- The output is an s-t cut of minimum capacity

Max-Flow Min-Cut Theorem

• Theorem

– N=(G,C,s,t) flow network, f a flow

- The following statements are equivalent:

- 1. f is a maximum flow
- 2. N_f has no augmenting path
- 3. |f|=C(L,R) for some s-t cut L,R

Proof

• Lemma

- Let f be a flow and L,R an s-t cut
- Then f(L*,*R)=|f|
- Proof:
 - f(L-{s},V)=0 by flow conservation
 - f(L,R)=f(L,V)-f(L,L) [from earlier observation]
 - =f(L,V)
 - =f({s},V)+f(L-{s},V)
 - =f({s},V)
 - =|f|

Proof

• Lemma

 $|f| \leq C(L,R)$ for every flow f and every s-t cut L,R

- Proof
 - $|f| = f(L,R) \leq C(L,R)$
- Hence the maximum value of |f| is upper bounded by C(L,R) for any s-t cut L,R

Proof of the Theorem

- 1 to 2:
 - Assume f is max but $\rm N_{f}$ has an augmenting path p, so f+f_p is larger, contradiction
- 2 to 3:
 - Assume N_f has no augmenting path
 - $-|f| \leq C(L,R)$ by the Lemma
 - Construct a cut:
 - L: vertices reachable from s in N_f
 - R=V-L
 - f(L,R)=|f|
 - All edges in G from L to R satisfy:
 - f(u,v)=C(u,v), otherwise they would be edges in N_f
 - Hence |f|=f(L,R)=C(L,R)
- 3 to 1:
 - $|f| \leq C(L,R)$. IF |f|=C(L,R), then f must be maximum flow

Correctness of Ford-Fulkerson

This proves that Ford Fulkerson computes a maximum flow

Duality

- The value of related maximization and minimization problems coincides
- Similar example: Linear Programming
- Useful to prove bounds:
 - To show that there is no larger flow than f it is enough to point out a cut with small capacity

Running Time

- We assume that augmenting paths are found by BFS
- Then:
 - Number of iterations is at most O(mn)
- Ford-Fulkerson finds maximum flows in time O(m²n)

Number of iterations

- Lemma:
 - Let N be a flow network
 - For all $v \neq s,t$:
 - The distance from s to v (number of edges) never decreases when changing N to a residual network

Proof

- Assume the distance $\delta(\textbf{s},\textbf{v})$ decreases in an iteration
- f is the flow before the iteration, f' afterwards
- $\delta(s,v)$ is the distance in N_f; $\gamma(s,v)$ in N_f.
- v has min. $\gamma(s,v)$ among all v with $\gamma(s,v) < \delta(s,v)$ (*)
- p: path s \rightarrow u \rightarrow v shortest path in $N_{f'}$

$$-\gamma(s,u) = \gamma(s,v)-1$$

$$-\delta(s,u) \leq \gamma(s,u)$$
 (*)

- -(u,v) is no edge in N_f
 - Assume $(u,v) \in N_f$
 - $\delta(s,v) \leq \delta(s,u) + 1$

•
$$\leq \gamma(s,u) + \gamma(s,u)$$

 $=\gamma(s,v)$ contradiction

Proof

- $C_{f'}(u,v)>0$ in $N_{f'}$ but $C_{f}(u,v)=0$ in N_{f}
- In the iteration the flow from v to u is increased
- There is a (shortest) augmenting path path in N_f with edge (v,u)
- I.e., a shortest path from s to u with edge (v,u) at the end exists in N_f
- Hence: δ(s,v)
 - $= \delta(s,u)-1$ $\leq \gamma(s,u)-1$ $= \gamma(s,v)-2$
- But we assumed $\gamma(s,v) < \delta(s,v)$

Number of iterations

• Theorem:

- There are at most mn iterations
- Proof:
 - Edges in N_f are *critical*, if the capacity of the augmenting path p is the capacity of (u,v) in N_f
 - Critical edges are removed, i.e. are not in $N_{f'}$
 - Every augmenting path has at least 1 critical edge
 - Claim: an edge can be critical at most n/2-1 times
 - Since at most 2m edges are used there can be at most nm iterations

Proof of the claim

- (u,v) critical in N_f for the first time: $\delta(s,v)=\delta(s,u)+1$
- (u,v) vanishes in the iteration
- (u,v) can only reappear if the flow from u to v is reduced
- Then (v,u) is on a shortest augmenting path; f' the flow at this time
- $\gamma(s,u)=\gamma(s,v)+1$
- $\delta(s,v) \leq \gamma(s,v)$ by the lemma
- Hence:
 - γ(s,u)=γ(s,v)+1
 - ≥δ(s,v)+1
 - = δ(s,u)+2
- Distance s to u increases by 2, before (u,v) can be critical
- Distance is integer between 0 and n-1
- (u,v) can be critical at most n/2-1 times.

Conclusion

 The Edmonds-Karp implementation of the Ford-Fulkerson approach computes maximum flows in time O(m²n)

Application: Matching

- For simplicity we consider the bipartite matching problem
- G=(LUR,E) is a bipartite graph
- A matching is a set M⊆ E, in which no two edges share a vertex
- A perfect matching (assuming |L|=|R|) has |L| edges
- Edges have weights W(u,v)
- A *maximum matching* is a matching with the maximum total edge weight

Flow network for bipartite matching

- G=(LUR,E) is a bipartite graph (unweighted)
- Add two extra vertices s, t
 - connect s to all vertices of L, weight 1
 - keep the edges in E (directed from L to R), weight 1
 - connect all vertices in R to t, weight 1
- Then the maximum flow in the new graph is equal to the maximum matching
 - We will prove this later, it is obvious that a matching leads to a flow but not the other way around

Computing Max Matchings

• Reduce the problem to Max Flow

Finding large matchings

- The Max Flow Min Cut theorem implies that the maximum flow in the graph is equal to the maximum matching:
 - A maximum matching of size s implies a flow of size s
 - The max flow is equal to the min s,t-cut
 - Find a cut that has capacity at most the maximum matching size

The Cut

- Define
 - U: matched vertex pairs connected to unmatched vertices in R (or to no unmatched vertices)
 - V: matched vertex pairs connected to unmatched vertices in L
 - U and V are disjoint, otherwise the matching is not maximum
 - Every matched pair is in either U or V
- There is a cut that has capacity |U|+|V|, which is the size of the matching

Finding large matchings

- **Problem:** flows across edges are not integers
- Definition: a flow is integral, if all f(u,v) are integers
- Claim:
 - If M is a matching in G, then there is an *integral* flow f in the flow network for G, such that |f|=|M|
 - Conversely, for an integral flow f there is a matching with |f|=|M|

Proof

- 1) Matching to Flow
 - Define flow as follows:
 - f(u,v)=1 if (u,v) in the matching, also f(v,u)=-1, f(s,u)=1, f(v,t)=1 etc.
 - all other edges: f(u,v)=0
 - This is a legal flow
 - Value is |M|

Proof

- 2) Flow to Matching
 - Let f be an integral flow
 - Set M={(u,v) with f(u,v)>0}
 - C(s,u)=1, hence f(s,u)∈{0,1}
 - f(u,v)∈{0,1}
 - For u there is at most one v with f(u,v)=1
 - M is a matching
 - |M|= |f|

Integrality

Theorem

If all C(u,v) are integers, and a maximum flow is computed with Ford Fulkerson, then |f| and all f(u,v) are integers

Corollary: Maximum Bipartite Matchings can be computed in time O(m²n)

And even in time O(mn):

Ford Fulkerson has time O(|f|m) for a max flow f, and $|f| \le n$

Better algorithm can do it in O(m n^{0.5}) (Hopcroft Karp)

• Proof:

- Induction over the iterations
- First iteration: there is an augmenting path with integral capacity $C_p(f)$
- N_f is also a network with integral capacities