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Network Flows

• A flow network is a directed graph G=(V,E) with nonegative 
edge weights C(u,v), called capacities
– nonedges have capacity 0

• There is a source s and a sink t
• We assume that for all v there is a path from s to v and from v 

to t
• A flow in G is a mapping f from V£V to the reals:

– For all u,v: f(u,v)· C(u,v)     [capacity constraint]
– For all u,v: f(u,v) = -f(v,u)  [skew symmetry]
– For all us,t:    v f(u,v)=0         [flow conservation]

• The value of a flow f is |f|=v f(s,v)
• The Max Flow problem consists of finding the maximum value 

of any flow for G,C,s,t



Remarks

• Having several sources and sinks can be 
modeled by using extra edges

• Nonadjacent u,v have C(u,v)=0

• Notation: For vertex sets X,Y denote
f(X,Y)=x2 X, y2 Y f(x,y)

• Similarly define C(X,Y)

• C(u,v) C(v,u) is possible!



An observation

• N=(G,C,s,t) is a flow network, f a flow. Then

– For all XµV: f(X,X)=0

– For all X,Yµ V: f(X,Y)=-f(Y,X)

– For all X,Y,Z with XÅY=;:

f(X[Y,Z)=f(X,Z)+f(Y,Z)



The Ford Fulkerson Method

• To start set f(u,v)=0 for all pairs u,v

• We will look for augmenting paths. i.e., paths 
in G along which we can increase f

• Repeat until there is no augmenting path



Augmenting paths

• Setting C(u,v)=0 for nonedges allows us to 
assume that the graph is complete

• Consider simple paths from s to t

• And a given flow f

• Definition: If C(u,v)-f(u,v)>0 for all edges on 
the path then the path is augmenting
– Note: C(u,v)=0 and f(u,v)<0 possible

• Definition: capacity C(p) of a path p is the 
minimum capacity of any edge on the path



Residual Network

• Given: flow network G,C,s,t, and flow f

• „Remove“ f, to get the residual network

• Formally: Set Cf(u,v)=C(u,v)-f(u,v)

• G with capacities Cf is a new flow network

• Note: Cf(u,v)>C(u,v) is possible



Residual Network

Lemma:

• N=(G,C,s,t) flow network, f flow

• Nf=(G,Cf,s,t) the residual network

• f‘ a flow in Nf

• f+f‘ defined by (f+f‘)(u,v)=f(u,v)+f‘(u,v)

• Then f+f‘ is a flow in N with value |f+f‘|=|f|+|f‘|



Augmenting Paths

• Flow network N and flow f

• Find the residual network Nf

• For a path p from s to t the residual capacity is 
Cf(p)=min{Cf(u,v): (u,v) on p}

• Search an augmenting path,
– i.e. path s to t with Cf(p)>0

• Idea: remove edges with capacity 0, perform 
BFS from s until t is found



Augmenting Paths

• Let p be an augmenting path

• Set fp(u,v)=

• Cf(p) if (u,v)  on p

• -Cf(p),   if (v,u) on p

• 0   otherwise

• Claim: then fp is a flow in the residual network

• And f+fp is a flow with value |f|+|fp| in N

• Proof by checking flow conditions



Ford Fulkerson

1. Input: flow network N=(G,C,s,t)

2. Set f(u,v)=0 for all pairs u,v

3. While there is an augmenting path p in Nf:

1. Compute Cf(p)

2. For all edges u,v on p: 

1. set f(u,v):=f(u,v)+Cf(p)

2. set f(v,u):=-f(u,v)

4. Output f



Running time

• Computing augmenting paths takes time O(m+n) 
• What is the number of iterations?
• Depending on the choice of paths (and the 

capacities) FF need not terminate at all!
• Running time can be (|f| m) where  f is the max 

flow and capacities are integers
– For integer weights no more than O(|f|) 

iterations are needed (augmenting paths add 
flow 1 at least)

– Example that (|f|) iterations can happen



Improving the running time

• Improvement, choose the augmenting paths 
with BFS

• Claim:
– If in each iteration an augmenting path in Nf is 

chosen by BFS then running time is O(nm2)
– Choosing paths by BFS means choosing 

augmenting paths with the smallest number of 
edges

• Proof: Later
• Edmonds-Karp algorithm



Correctness of Ford Fulkerson

• Tool: the Max-flow Min-cut Theorem

• This will imply that a flow is maximum iff 
there is no augmenting path

• Hence the output of Ford Fulkerson is correct

• The theorem is an example of duality/min-
max theorems



Min Cuts

• s-t Min Cut problem: input is a flow network

• An s-t cut is a partition of  V into L,R with s2 L 
and t2 R

• The capacity of the cut is C(L,R)=u,v C(u,v), 
where u2 L and v2 R

• The output is an s-t cut of minimum capacity



Max-Flow Min-Cut Theorem

• Theorem

– N=(G,C,s,t) flow network, f a flow 

– The following statements are equivalent:

1. f is a maximum flow

2. Nf has no augmenting path

3. |f|=C(L,R) for some s-t cut L,R



Proof

• Lemma

– Let f be a flow and L,R an s-t cut

– Then f(L,R)=|f|

• Proof:

• f(L-{s},V)=0 by flow conservation

• f(L,R)=f(L,V)-f(L,L)  [from earlier observation]

• =f(L,V)

• =f({s},V)+f(L-{s},V)

• =f({s},V)

• =|f|



Proof

• Lemma

|f|· C(L,R) for every flow f and every s-t cut L,R

• Proof

• |f|= f(L,R)  · C(L,R)

• Hence the maximum value of |f| is upper 
bounded by C(L,R) for any s-t cut L,R



Proof of the Theorem

• 1 to 2:
– Assume f is max but Nf has an augmenting path p, so f+fp is 

larger, contradiction 

• 2 to 3:
– Assume Nf has no augmenting path  
– |f|· C(L,R) by the Lemma
– Construct a cut:

• L: vertices reachable from s in Nf

• R=V-L

– f(L,R)=|f|
– All edges in G from  L to  R satisfy:

• f(u,v)=C(u,v), otherwise they would be edges in Nf

• Hence |f|=f(L,R)=C(L,R)

• 3 to 1:
– |f|· C(L,R). IF |f|=C(L,R), then f must be maximum flow



Correctness of Ford-Fulkerson

• This proves that Ford Fulkerson computes a 
maximum flow



Duality

• The value of related maximization and 
minimization problems coincides

• Similar example: Linear Programming

• Useful to prove bounds:

– To show that there is no larger flow than f it is 
enough to point out a cut with small capacity



Running Time

• We assume that augmenting paths are found 
by BFS

• Then:

– Number of iterations is at most O(mn)

• Ford-Fulkerson finds maximum flows in time 
O(m2n)



Number of iterations

• Lemma:
– Let N be a flow network
– For all  vs,t:

• The distance from s to v (number of edges) never 
decreases when changing N to a residual network



Proof

• Assume the distance (s,v) decreases in an 
iteration

• f is the flow before the iteration,  f‘ afterwards
• (s,v) is the distance in Nf; (s,v) in Nf ‘
• v has min. (s,v) among all v with (s,v)<(s,v)  (*)
• p: path s! u! v shortest path in Nf ‘

– (s,u)  =  (s,v)-1
– (s,u) · (s,u)              (*)
– (u,v) is no edge in Nf 

• Assume (u,v)2 Nf
• (s,v)·(s,u)+1
• ·(s,u)+1
• =(s,v)                contradiction



Proof

• Cf‘(u,v)>0 in Nf‘ but Cf(u,v)=0 in Nf

• In the iteration the flow from v to u is increased
• There is a (shortest) augmenting path path in Nf with 

edge (v,u)
• I.e., a shortest path from s to u with edge (v,u) at the 

end exists in Nf

• Hence:
(s,v)

=   (s,u)-1
· (s,u)-1
=   (s,v)-2

• But we assumed (s,v)<(s,v)



Number of iterations

• Theorem:

– There are at most mn iterations

• Proof:

– Edges in  Nf are critical, if the capacity of the 
augmenting path p is the capacity of (u,v) in Nf

– Critical edges are removed, i.e. are not in Nf'

– Every augmenting path has at least 1 critical edge

– Claim: an edge can be critical at most n/2-1 times

– Since at most 2m edges are used there can be at 
most nm iterations



Proof of the claim

• (u,v) critical in Nf for the first time:
(s,v)=(s,u)+1

• (u,v) vanishes in the iteration
• (u,v) can only reappear if the flow from  u to v is reduced
• Then (v,u) is on a shortest augmenting path; f‘ the flow at this 

time
• (s,u)=(s,v)+1
• (s,v)·(s,v)  by the lemma
• Hence:

▪ (s,u)=(s,v)+1
▪ ¸(s,v)+1
▪ = (s,u)+2

• Distance s to u increases by 2, before (u,v) can be critical
• Distance is integer between 0 and n-1
• (u,v) can be critical at most n/2-1 times.



Conclusion

• The Edmonds-Karp implementation of the 
Ford-Fulkerson approach computes maximum 
flows in time O(m2n)



Application: Matching

• For simplicity we consider the bipartite matching 
problem

• G=(L[R,E) is a bipartite graph
• A matching is a set Mµ E, in which no two edges 

share a vertex
• A perfect matching (assuming |L|=|R|) has |L| 

edges
• Edges have weights W(u,v)
• A maximum matching is a matching with the 

maximum total edge weight



Flow network for bipartite matching

• G=(L[R,E) is a bipartite graph (unweighted)

• Add two extra vertices s, t

– connect s to all vertices of L, weight 1

– keep the edges in E (directed from L to R), weight 1

– connect all vertices in R to t, weight 1

• Then the maximum flow in the new graph is 
equal to the maximum matching

– We will prove this later, it is obvious that a matching 
leads to a flow but not the other way around 



Computing Max Matchings

• Reduce the problem to Max Flow



Finding large matchings

• The Max Flow Min Cut theorem implies that 
the maximum flow in the graph is equal to the 
maximum matching:

– A maximum matching of size s implies a flow of 
size s

– The max flow is equal to the min s,t-cut

– Find a cut that has capacity at most the maximum 
matching size



The Cut

• Define
– U: matched vertex pairs connected to unmatched 

vertices in R (or to no unmatched vertices)

– V: matched vertex pairs connected to unmatched 
vertices in L

– U and V are disjoint, otherwise the matching is not 
maximum

– Every matched pair is in either U or V

• There is a cut that has capacity |U|+|V|, which is 
the size of the matching



The Cut



Finding large matchings

• Problem: flows across edges are not integers

• Definition: a flow is integral, if all f(u,v) are 
integers

• Claim:
– If M is a matching in G, then there is an integral

flow f in the flow network for G, such that 
|f|=|M|

– Conversely, for an integral flow f there is a 
matching with |f|=|M|



Proof

1) Matching to Flow

• Define flow as follows:

• f(u,v)=1 if (u,v) in the  matching, also f(v,u)=-1, f(s,u)=1, 
f(v,t)=1 etc.

• all other edges: f(u,v)=0

• This is a legal flow

• Value is |M|



Proof

2) Flow to Matching

• Let f be an integral flow

• Set M={(u,v) with f(u,v)> 0}

• C(s,u)=1, hence f(s,u)2{0,1}

• f(u,v)2{0,1}

• For u there is at most one v with f(u,v)=1

• M is a matching

• |M|= |f|



Integrality

• Theorem
If all C(u,v) are integers, and a maximum flow is computed 
with Ford Fulkerson, then |f| and all f(u,v) are integers

• Corollary: Maximum Bipartite Matchings can be computed in 
time O(m2n) 
And even in time O(mn):
Ford Fulkerson has time O(|f|m) for a max flow f, and |f|· n
– Better algorithm can do it in O(m n0.5) (Hopcroft Karp)

• Proof:
– Induction over the iterations
– First iteration: there is an augmenting path with integral 

capacity Cp(f) 
– Nf is also a network with integral capacities


