Theory of Computing

Lecture 11
MAS 714

Hartmut Klauck

Network Flows

A flow network is a directed graph G=(V,E) with nonegative
edge weights C(u,v), called capacities

— nonedges have capacity O
There is a source s and a sink t

We assume that for all v there is a path from s to vand from v
tot

A flow in G is a mapping f from VXV to the reals:
— Forallu,v: f(u,v)<C(u,v) [capacity constraint]
— Forallu,v: f(u,v) =-f(v,u) [skew symmetry]
— Foralluzs,t: 2, f(u,v)=0 flow conservation]
The value of a flow fis |f|=2, f(s,v)

The Max Flow problem consists of finding the maximum value
of any flow for G,C,s,t

Remarks

Having several sources and sinks can be
modeled by using extra edges

Nonadjacent u,v have C(u,v)=0

Notation: For vertex sets X,Y denote
f(X,Y)=ZX€ X, ye Y f(x,y)

Similarly define C(X,Y)

C(u,v)# C(v,u) is possible!

An observation

* N=(G,C,s,t) is a flow network, f a flow. Then

— For all XCV: f(X,X)=0
— For all X,YC V: f(X,Y)=-f(Y,X)
— For all X)Y,Z with XNY=0:

F(XUY,Z)=F(X,2)+f(Y,2)

The Ford Fulkerson Method

e To start set f(u,v)=0 for all pairs u,v

 We will look for augmenting paths. i.e., paths
in G along which we can increase f

* Repeat until there is no augmenting path

Augmenting paths

Setting C(u,v)=0 for nonedges allows us to
assume that the graph is complete

Consider simple paths from stot

And a given flow f

Definition: If C(u,v)-f(u,v)>0 for all edges on
the path then the path is augmenting

— Note: C(u,v)=0 and f(u,v)<0 possible
Definition: capacity C(p) of a path p is the
minimum capacity of any edge on the path

Residual Network

Given: flow network G,C,s,t, and flow f
,Remove”f, to get the residual network
Formally: Set Ci(u,v)=C(u,v)-f(u,v)

G with capacities C; is a new flow network
Note: C(u,v)>C(u,v) is possible

Residual Network

Lemma:
* N=(G,C,s,t) flow network, f flow
* N:=(G,C,s,t) the residual network
* f"aflowin N;
e f+f’ defined by (f+f‘)(u,v)=f(u,v)+f(u,v)
 Then f+fis a flow in N with value |f+f|=|f|+]|f’|

Augmenting Paths

-low network N and flow f
-ind the residual network N;

~or a path p from s to t the residual capacity is
Cip)=min{C¢(u,v): (u,v) on p}

Search an augmenting path,

—i.e. path s to t with C{(p)>0

ldea: remove edges with capacity O, perform
BFS from s until t is found

Augmenting Paths

Let p be an augmenting path

Set f (u,v)=

* Cdp) if(uyv) onp

* -Cp), if(vu)onp

* 0 otherwise

Claim: then f, is a flow in the residual network
And f+f is a flow with value [f[+]f,] in N

Proof by checking flow conditions

Ford Fulkerson

1. Input: flow network N=(G,C,s,t)
2. Set f(u,v)=0 for all pairs u,v

3. While there is an augmenting path p in N

1. Compute Ci(p)

2. For all edges u,v on p:
1. set f(u,v):=f(u,v)+Cp)
2. set f(v,u):=-f(u,v)

4. Output f

Running time

Computing augmenting paths takes time O(m+n)
What is the number of iterations?

Depending on the choice of paths (and the
capacities) FF need not terminate at all!

Running time can be O(|f| m) where fis the max
flow and capacities are integers

— For integer weights no more than O(|f])
iterations are needed (augmenting paths add
flow 1 at least)

— Example that QQ(|f]|) iterations can happen

Improving the running time

Improvement, choose the augmenting paths
with BFS
Claim:

— If in each iteration an augmenting path in N is
chosen by BFS then running time is O(nm?)

— Choosing paths by BFS means choosing
augmenting paths with the smallest number of
edges

Proof: Later
Edmonds-Karp algorithm

Correctness of Ford Fulkerson

Tool: the Max-flow Min-cut Theorem

This will imply that a flow is maximum iff
there is no augmenting path

Hence the output of Ford Fulkerson is correct

The theorem is an example of duality/min-
max theorems

Min Cuts

s-t Min Cut problem: input is a flow network

An s-t cut is a partition of Vinto L,R withse L
and te R

The capacity of the cut is C(L,R)=2, , C(u,v),
where u€ Land ve R

The output is an s-t cut of minimum capacity

Max-Flow Min-Cut Theorem

* Theorem

— N=(G,C,s,t) flow network, f a flow

— The following statements are equivalent:
1. fisa maximum flow

2. N¢has no augmenting path
3. |f|=C(L,R) for some s-t cut L,R

Proof

* Lemma
— Let f be a flow and L,R an s-t cut
— Then f(L,R)=|f]
* Proof:
e f(L-{s},V)=0 by flow conservation
* f(L,R)=f(L,V)-f(L,L) [from earlier observation]
e =f(L,V)
 =f({s},V)+f(L-{s},V)
« =f({s}V)
* =|f|

Proof

* Lemma
|f| < C(L,R) for every flow f and every s-t cut L,R

* Proof
* |f|=f(L,R) < C(L,R)

* Hence the maximum value of |f| is upper
bounded by C(L,R) for any s-t cut L,R

Proof of the Theorem

e 1to2:

— Assume f is max but N¢ has an augmenting path p, so f+f is
larger, contradiction

e 210 3:

— Assume N; has no augmenting path

— |f| < C(L,R) by the Lemma

— Construct a cut:
* L: vertices reachable from s in N;
¢ R=V-L

— f(L,R)=|f]

— All edges in G from L to R satisfy:
* f(u,v)=C(u,v), otherwise they would be edges in N;
e Hence |f|=f(L,R)=C(L,R)

* 3tol:
— |f| < C(L,R). IF |f|=C(L,R), then f must be maximum flow

Correctness of Ford-Fulkerson

* This proves that Ford Fulkerson computes a
maximum flow

Duality

* The value of related maximization and
minimization problems coincides

* Similar example: Linear Programming
e Useful to prove bounds:

— To show that there is no larger flow than f it is
enough to point out a cut with small capacity

Running Time

 We assume that augmenting paths are found
by BFS

* Then:

— Number of iterations is at most O(mn)

 Ford-Fulkerson finds maximum flows in time
O(m?n)

Number of iterations

* Lemma:
— Let N be a flow network
— For all v#s,t:

e The distance from s to v (number of edges) never
decreases when changing N to a residual network

Proof

Assume the distance o(s,v) decreases in an
iteration

fis the flow before the iteration, f‘ afterwards
o(s,v) is the distance in Ng; y(s,v) in N;.

v has min. y(s,v) among all v with y(s,v)<o(s,v) (*)
p: path s— u— v shortest path in N;.

— yls,u) = yis,v)-1
— 0Ofs, u) < y(s,u) (*)
(u v) is no edge in N;
* Assume (u,v)E N;
* 8(s,v)<8(s,u)+1
. <7v(s,u)+1
=y(s,v) contradiction

Proof

Ci(u,v)>0in N but C{u,v)=0in N,
In the iteration the flow from v to u is increased

There is a (shortest) augmenting path path in N; with
edge (v,u)

l.e., a shortest path from s to u with edge (v,u) at the
end exists in N;

Hence:
o(s,v)

= 0(s,u)-1
< vy(s,u)-1

= 'Y(S,V)'z
But we assumed y(s,v)<o(s,Vv)

Number of iterations

e Theorem:
— There are at most mn iterations
 Proof:

— Edges in N; are critical, if the capacity of the
augmenting path p is the capacity of (u,v) in N,

— Critical edges are removed, i.e. are not in N¢
— Every augmenting path has at least 1 critical edge
— Claim: an edge can be critical at most n/2-1 times

— Since at most 2m edges are used there can be at
most nm iterations

Proof of the claim

(u,v) critical in N¢ for the first time:
o(s,v)=0(s,u)+1

(u,v) vanishes in the iteration
(u,v) can only reappear if the flow from u to v is reduced
Then (v,u) is on a shortest augmenting path; f* the flow at this
time
v(s,u)=y(s,v)+1
o(s,v)<vy(s,v) by the lemma
Hence:
" y(s,u)=y(s,v)+1
= >9(s,v)+1
= =9(s,u)+2
Distance s to u increases by 2, before (u,v) can be critical
Distance is integer between 0 and n-1
(u,v) can be critical at most n/2-1 times.

Conclusion

* The Edmonds-Karp implementation of the
Ford-Fulkerson approach computes maximum
flows in time O(m?n)

Application: Matching

For simplicity we consider the bipartite matching
problem

G=(LUR,E) is a bipartite graph
A matching is a set MC E, in which no two edges
share a vertex

A perfect matching (assuming |L|=|R|) has |L]
edges

Edges have weights W(u,v)

A maximum matching is a matching with the
maximum total edge weight

Flow network for bipartite matching

 G=(LUR,E) is a bipartite graph (unweighted)
 Add two extra vertices s, t
— connect s to all vertices of L, weight 1
— keep the edges in E (directed from L to R), weight 1
— connect all verticesin Rto t, weight 1
 Then the maximum flow in the new graph is

equal to the maximum matching

— We will prove this later, it is obvious that a matching
leads to a flow but not the other way around

Computing Max Matchings

* Reduce the problem to Max Flow

Finding large matchings

* The Max Flow Min Cut theorem implies that
the maximum flow in the graph is equal to the
maximum matching:

— A maximum matching of size s implies a flow of
Ssize s

— The max flow is equal to the min s,t-cut

— Find a cut that has capacity at most the maximum
matching size

The Cut

e Define

— U: matched vertex pairs connected to unmatched
vertices in R (or to no unmatched vertices)

— V: matched vertex pairs connected to unmatched
verticesin L

— U and V are disjoint, otherwise the matching is not
maximum

— Every matched pair is in either U or V

 There is a cut that has capacity |U|+]|V|, which is
the size of the matching

Finding large matchings

* Problem: flows across edges are not integers

e Definition: a flow is integral, if all f(u,v) are
Integers

e Claim:

— If M is a matching in G, then there is an integral
flow f in the flow network for G, such that
[f[=[M]

— Conversely, for an integral flow f there is a
matching with |f|=|M|

Proof

1) Matching to Flow

 Define flow as follows:

e f(u,v)=1if (u,v) in the matching, also f(v,u)=-1, f(s,u)=1,
f(v,t)=1 etc.

e all other edges: f(u,v)=0
* This is a legal flow
* Valueis |M|

Proof

2) Flow to Matching
* Let f be an integral flow
Set M={(u,v) with f(u,v)> 0}
C(s,u)=1, hence f(s,u)e{0,1}
f(u,v)€{0,1}
For u there is at most one v with f(u,v)=1

M is a matching
IM|= [f]

Integrality

Theorem
If all C(u,v) are integers, and a maximum flow is computed
with Ford Fulkerson, then |f| and all f(u,v) are integers

Corollary: Maximum Bipartite Matchings can be computed in
time O(m?n)

And even in time O(mn):

Ford Fulkerson has time O(|f|m) for a max flow f, and |f|<n
— Better algorithm can do it in O(m n®?) (Hopcroft Karp)

Proof:
— Induction over the iterations

— First iteration: there is an augmenting path with integral
capacity C(f)

— N¢ is also a network with integral capacities

