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Linear Programming

• Linear Programming is the most powerful 
optimization problem that can be solved in 
polynomial time
– Some generalizations [semidefinite programming] can 

be much more appropriate to use

• Fast LP solvers exist
– Write an LP, solve it

– Fast in theory/fast in practice...

• Important theoretical tool

• Duality



Linear Programming

• Definition

– A Linear Program (LP) is an optimization problem over  real 
variables x1,…,xn

– Maximizes/minimizes a linear function of x:
max/min     C(x)=i ci xi ( ci are real coefficients)

– Constraints: feasible solutions are those that satisfy a 
system of linear inqualities:
• A is a real m£ n matrix, b a vector

• All x with Ax · b are feasible

– We are looking for a feasible x with maximum C(x)



Example: Shortest Path

• Variables: d(v) for all vertices v

• Objective function:

Maximize  -d(t)

• Constraints:

d(v)· d(u)+W(u,v)    for all edges (u,v)

d(s)=0



Example: Max Flow

• Graph G with capacities C(u,v)

• G has m edges (u,v), use m variables f(u,v)

• Inequalities:
• f(u,v)· C(u,v)        for all edges (u,v)

• v f(u,v)= v f(v,u)               for all u except s,t

• f(u,v)¸ 0                                for all edges

• Maximize v f(s,v)

• The program has m variables and m+n-2 
inequalities/equations
– Not counting nonnegativity constraint for f(u,v)

• By definition the maximum is a maximum flow



Standard form

• Constraints using ¸, · and = are possible

• Easy to reduce to the standard form:
▪ max cTx

▪ Constraints:

▪ Ax· b

▪ x¸ 0

▪ c,b (column) vectors of lengths n,m

▪ x vector of n variables

▪ A is  m by n matrix of coefficients



Duality

• Given an LP (A,b,c) in standard form

• We call this the primal LP

• The  dual LP is defined as follow:

– There are  m variables yi

– Minimize    i bi yi

– Constraints:

• i=1
m A[i,j] yi¸ cj

• y¸ 0 



Weak Duality

• Claim:

– Let x be a feasible solution for the primal LP and y 
a feasible solution for the dual LP, then



Proof



Strong Duality

• Strong duality means that feasible solutions 
with the same value exist for the primal and 
the dual

• Compare Max Flow/Min Cut theorem



Nonstandard form

• The dual of a standard primal has a variable 
for each constraint of the primal and a 
constraint for each variable

– And all variables are nonnegative

• If the primal has an equation  ai xi = b
then the dual has a variable which is not 
constrained to be nonnegative



Example

• Dual LP for Shortest Path

– m nonnegative variables x(u,v) for edges (u,v)

– n-1 constraints (for all vertices except s)

• Objective: Min σ 𝑢,𝑣 𝑥 𝑢, 𝑣 𝑊(𝑢, 𝑣)

• Constraints:

– v not s,t:σ 𝑢,𝑣 𝑥(𝑢, 𝑣) − σ(𝑣,𝑢) 𝑥(𝑣, 𝑢) ≥ 0

– σ 𝑢,𝑡 𝑥(𝑢, 𝑡) − σ(𝑡,𝑢) 𝑥(𝑡, 𝑢) ≥ -1

– 𝑥(𝑢, 𝑣) ≥ 0



Interpretation

• Move one unit of flow (at least) from s to t

• Flow out of s unconstrained

• Each v other than s,t:
Outflow <= Inflow

• t:
Outflow<= Inflow – 1

• I.e., one unit of flow ``vanishes’’ at t



Interpretation

• Cheapest way to achieve this:

– Find a shortest path and flow 1 along it



Integrality

• Assume that all the edge weights are integers

• We know that the shortest path has integer 
cost

• And that there is a solution to the dual that 
simply puts x(u,v)=1 on the shortest path

• But will we find such a solution?

– Or will the solution be something with noninteger
x(u,v)?



Integrality

• Definition: a matrix M is totally unimodular, if 
the determinant of every square submatrix is 
either 0,1, or -1

• Theorem:
If the coefficient matrix of an LP is totally 
unimodular, then the Simplex algorithm will 
find an integer solution (b must be integer)

• For shortest path the matrix is totally 
unimodular



Example

• Dual LP for Max Flow
– This will have m nonnegative variables [from m 

capacity constraints] and n-2 other variables [from 
n-2 flow conservation constraint]

– Dual variables: x(u,v), y(v)

• Constraints:
– There are m constraints

• Objective function:
– min uv x(u,v) C(u,v)



Constraints

• One constraint for each edge (u,v) 
– f(u,v) appears in 3 constraints in the primal

• Constraints in the dual
• y(s)=1                                   Note: y(s) and y(t) extra `variables’

• y(t)=0

• For each edge (u,v):        x(u,v) - y(u) + y(v) ¸ 0

• For each edge (u,v):                x(u,v)¸0 

• Interpretation:
– For all s-t- paths p: sum of weights x(u,v) on p is at 

least 1



Equivalence

• An s,t-cut (L,R) of capacity c yields a solution of 
cost c
– Each edge from L to R receives weight 1

– Set all y(v)=0

– Cost is now equal to cut capacity

– Constraints are true for every s,t path

• At least we know that the program is a relaxation 
of s,t-Min Cut

• How can we extract a cut from a solution of the 
dual LP?



Finding the cut

• First find shortest paths according to x(u,v) 
using Dijkstra, call the distances d(v)

• d(t)¸ 1

• Let L={v: d(v)· } for some 2 [0,1)

– s2L, t2R=V-L

– s,t, cut L,R

• Expected capacity for random :
• (u,v) C(u,v) Prob [u2 L and v2 R]



Finding the cut

• (u,v) C(u,v) Prob [u2 L and v2 R]

• But Prob [u2 L and v2 R] · d(v)-d(u)· x(u,v)
– The probability is the length of the interval [d(u),d(v)]

– d(v)<=d(u)+x(u,v) 

• Hence the expectation is at most
(u,v) C(u,v) x(u,v)

• Which is the value of the program

• I.e., given a solution of the LP of cost at most c there is a cut 
L,R of cost at most c

• I.e., the optimum of the LP has the same cost as the Min st cut

• Finding the cut: exercise.



Linear Programming

• Some facts:

– In practice LP‘s are usually solved with the Simplex 
Algorithm

– Many math programs/libraries have LP solvers

– Simplex is exponential in the worst case

– There is a theoretical explanation why Simplex is 
fast in practice [smoothed analysis]

– Worst case polynomial time algorithms:
• Ellipsoid

• Interior Point Methods


