Theory of Computing

Lecture 12

MAS 714

Hartmut Klauck

Linear Programming

- Linear Programming is the most powerful optimization problem that can be solved in polynomial time
 - Some generalizations [semidefinite programming] can be much more appropriate to use
- Fast LP solvers exist
 - Write an LP, solve it
 - Fast in theory/fast in practice...
- Important theoretical tool
- Duality

Linear Programming

Definition

- A Linear Program (LP) is an optimization problem over real variables x₁,...,x_n
- Maximizes/minimizes a linear function of x: $\max/\min C(x) = \sum_i c_i x_i$ (c_i are real coefficients)
- Constraints: feasible solutions are those that satisfy a system of linear inqualities:
 - A is a real m× n matrix, b a vector
 - All x with Ax ≤ b are feasible
- We are looking for a feasible x with maximum C(x)

Example: Shortest Path

- Variables: d(v) for all vertices v
- Objective function:

```
Maximize -d(t)
```

Constraints:

```
d(v) \le d(u) + W(u,v) for all edges (u,v)
d(s)=0
```

Example: Max Flow

- Graph G with capacities C(u,v)
- G has m edges (u,v), use m variables f(u,v)
- Inequalities:
 - $f(u,v) \leq C(u,v)$
 - $\sum_{v} f(u,v) = \sum_{v} f(v,u)$
 - $f(u,v) \ge 0$

for all edges (u,v)

for all u except s,t

for all edges

- Maximize $\sum_{v} f(s,v)$
- The program has m variables and m+n-2 inequalities/equations
 - Not counting nonnegativity constraint for f(u,v)
- By definition the maximum is a maximum flow

Standard form

- Constraints using \geq , \leq and = are possible
- Easy to reduce to the standard form:
 - \blacksquare max c^Tx
 - Constraints:
 - Ax< b
 - x≥ 0
- c,b (column) vectors of lengths n,m
- x vector of n variables
- A is m by n matrix of coefficients

Duality

- Given an LP (A,b,c) in standard form
- We call this the primal LP
- The dual LP is defined as follow:
 - There are m variables y_i
 - Minimize $\sum_i b_i y_i$
 - Constraints:
 - $\sum_{i=1}^{m} A[i,j] y_i \ge c_i$
 - y ≥ 0

Weak Duality

Claim:

 Let x be a feasible solution for the primal LP and y a feasible solution for the dual LP, then

$$\sum_{j=1}^{n} \langle j | X_j \rangle \leq \sum_{i=1}^{n} b_i | X_i \rangle$$

Proof

$$\sum_{i=1}^{n} c_{i} \times_{i} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} A \sum_{i,j} \gamma_{i} \right) \times_{j}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A \sum_{i,j} \gamma_{i} \right) \times_{i}$$

$$\leq \sum_{i=1}^{m} b_{i} \times_{i}$$

Strong Duality

 Strong duality means that feasible solutions with the same value exist for the primal and the dual

Compare Max Flow/Min Cut theorem

Nonstandard form

- The dual of a standard primal has a variable for each constraint of the primal and a constraint for each variable
 - And all variables are nonnegative
- If the primal has an equation $\sum a_i x_i = b$ then the dual has a variable which is not constrained to be nonnegative

Example

- Dual LP for Shortest Path
 - m nonnegative variables x(u,v) for edges (u,v)
 - n-1 constraints (for all vertices except s)
- Objective: Min $\sum_{(u,v)} x(u,v)W(u,v)$
- Constraints:
 - v not s,t: $\sum_{(u,v)} x(u,v) \sum_{(v,u)} x(v,u) \ge 0$
 - $-\sum_{(u,t)} x(u,t) \sum_{(t,u)} x(t,u) \ge -1$
 - $-x(u,v) \ge 0$

Interpretation

- Move one unit of flow (at least) from s to t
- Flow out of s unconstrained
- Each v other than s,t:
 Outflow <= Inflow
- t: Outflow<= Inflow - 1
- I.e., one unit of flow ``vanishes'' at t

Interpretation

- Cheapest way to achieve this:
 - Find a shortest path and flow 1 along it

Integrality

- Assume that all the edge weights are integers
- We know that the shortest path has integer cost
- And that there is a solution to the dual that simply puts x(u,v)=1 on the shortest path
- But will we find such a solution?
 - Or will the solution be something with noninteger x(u,v)?

Integrality

- Definition: a matrix M is totally unimodular, if the determinant of every square submatrix is either 0,1, or -1
- Theorem:
 If the coefficient matrix of an LP is totally unimodular, then the Simplex algorithm will find an integer solution (b must be integer)
- For shortest path the matrix is totally unimodular

Example

- Dual LP for Max Flow
 - This will have m nonnegative variables [from m capacity constraints] and n-2 other variables [from n-2 flow conservation constraint]
 - Dual variables: x(u,v), y(v)
- Constraints:
 - There are m constraints
- Objective function:
 - $-\min \sum_{uv} x(u,v) C(u,v)$

Constraints

- One constraint for each edge (u,v)
 - f(u,v) appears in 3 constraints in the primal
- Constraints in the dual

```
• y(s)=1 Note: y(s) and y(t) extra `variables'
```

• y(t)=0

• For each edge (u,v): $x(u,v) - y(u) + y(v) \ge 0$

• For each edge (u,v): $x(u,v) \ge 0$

- Interpretation:
 - For all s-t- paths p: sum of weights x(u,v) on p is at least 1

Equivalence

- An s,t-cut (L,R) of capacity c yields a solution of cost c
 - Each edge from L to R receives weight 1
 - Set all y(v)=0
 - Cost is now equal to cut capacity
 - Constraints are true for every s,t path
- At least we know that the program is a relaxation of s,t-Min Cut
- How can we extract a cut from a solution of the dual LP?

Finding the cut

- First find shortest paths according to x(u,v) using Dijkstra, call the distances d(v)
- $d(t) \ge 1$
- Let L={v: $d(v) \le \Theta$ } for some $\Theta \in [0,1)$
 - $-s\in L$, $t\in R=V-L$
 - s,t, cut L,R
- Expected capacity for random Θ :
 - $\sum_{(u,v)} C(u,v) \operatorname{Prob}_{\Theta} [u \in L \text{ and } v \in R]$

Finding the cut

- $\sum_{(u,v)} C(u,v) \operatorname{Prob}_{\Theta} [u \in L \text{ and } v \in R]$
- But $Prob_{\Theta}[u \in L \text{ and } v \in R] \leq d(v)-d(u) \leq x(u,v)$
 - The probability is the length of the interval [d(u),d(v)]
 - $d(v) \leq d(u) + x(u,v)$
- Hence the expectation is at most $\sum_{(u,v)} C(u,v) x(u,v)$
- Which is the value of the program
- I.e., given a solution of the LP of cost at most c there is a cut L,R of cost at most c
- I.e., the optimum of the LP has the same cost as the Min st cut
- Finding the cut: exercise.

Linear Programming

Some facts:

- In practice LP's are usually solved with the Simplex Algorithm
- Many math programs/libraries have LP solvers
- Simplex is exponential in the worst case
- There is a theoretical explanation why Simplex is fast in practice [smoothed analysis]
- Worst case polynomial time algorithms:
 - Ellipsoid
 - Interior Point Methods