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Sorting

• Computers spend a lot of time sorting!
• Assume we have a list of numbers x1,…,xn from a 

universe U
• For simplicity assume the xi are distinct
• The goal is to compute a permutation ¼ such that

x ¼(1)<  x¼(2) <    <  x¼(n)

• Think of a deck of cards
• Simple model:

– Input: permutation of 1,...,n
– Output: inverse permutation



Last week: Binary Insertion Sort

• Using binary search in InsertionSort reduces 
the number of comparisons to O(n log n)

– The outer loop is executed n times, each inner 
loop now uses log n comparisons

• Unfortunately the number of swaps does not 
decrease:

– To insert an element we need to shift the 
remaining array to the right!



Quicksort

• Quicksort follows the „Divide and Conquer“ 
paradigm

• The algorithm is best described recursively

• Idea:

– Split the sequence into two

• All elements in one  sequence are smaller than in the other

– Sort each sequence recursively

– Put them back together



Quicksort

• Quicksort(A,l,r)

– If l=r return A

– Choose a pivot position j between l and r

– u=1,v=1, initialize arrays B,C

– for (i=l…r): If A[i]<A[j] then B[u]=A[i], u++
If A[i]>A[j] then C[v]=A[i], v++

– Run Quicksort(B,1,u) and Quicksort(C,1,v) and 
return their output (concatenated), with A[j] in 
the middle



How fast is it?

• The quality of the algorithm depends on how 
we split up the sequence

• Intuition:

– Even split will be best

• Questions:

– How are the asymptotics?

– Are approximately even splits good enough?



Worst Case Time

• We look at the case when we really just split 
into the pivot and the rest (maximally uneven)

• Let T(n) denote the number of comparisons 
for n elements

• T(2)=1

• T(n) <= T(n-1)+n-1

• Solving the recurrence gives T(n)=O(n2)



Best Case Time

• Best: every pivot splits the sequence in half

• T(2)=1

• T(n)=2T(n/2)+n-1

• Questions:
– How to solve this?

– What if the split is 3/4 vs. 1/4 ? 



Recurrences
• How to solve simple recurrences
• Several techniques
• Idea: Consider the recursion tree
• For Quicksort every call of the procedure generates 

two calls to a smaller Quicksort procedure
– Problem size 1 is solved immediately

• Nodes of the tree are labelled with the sequences that 
are sorted at that node

• The cost of a node is the number of comparisons used 
to split the sequence at the node. I.e. is equal to the 
length of the sequence at the node minus 1.





Example: the perfect tree

• In the best case the sequence length halves-> 
after log n calls the sequence has length 1

• Depth of the tree is log n
– Number of nodes is O(n)

– But each node has a cost
• nodes on level 0 cost n-1, on level 1 cost n/2-1 etc.

– For simplicity we assume n is a power of 2

– Level i has 2i nodes of cost n/2i -1 

• Total cost is O(n) per level-> O(n log n)



Verifying the guess

• Guess: T(n) <= n log n

• T(1): T(1)=0 = 1 log (1)

• T(2): T(2) = 1 <= 2

• T(n) <= 2T(n/2) + n-1
<=  n log(n/2)  + n-1
<=  n log n – n  + n-1
<=  n log n



The Master Theorem

• The Master Theorem is a way to get solutions to 
recurrences

• Theorem:
a,b constant, f(n) function
Recurrence T(n)=a T(n/b) + f(n)
and T(O(1)) constant

• 1)
• 2)
• 3)



The Master Theorem

• We omit the proof

• Application:

• T(n)=9T(n/3)+n

• a=9, b=3, f(n)=n, nlog
b

(a)=n2

– Case 1 applies, Solution is T(n)=O(n2)



Attempt on the case of uneven splits

• Assume every pivot splits exactly ¾n vs. n/4
– T(n)=T(3n/4)+T(n/4)+n

• Same idea:
– Nodes on level i have cost at most n/(3/4)i

– There are at most log4/3 n levels
– What is the total cost of all nodes at a level?
– Note that all K nodes on a level correspond to a 

partition of all n inputs into K sets!
– If sets have size s1,…, sK then comparisons are s1-1+ … 

sK-1
– less than n comparisons on any one level



Quicksort Time

• So if every split is partitioning the sequence 
somewhat evenly (99% against 1%) then the 
running time is O(n log n)



Average Case Time

• Suppose the pivot is chosen in any fixed way

– Say, the first element

• Claim: the expected running time of Quicksort 
is O(n log n)

– Expected over what?

– Chosing a random permutation as the input

• Recall that the input to the sorting problem is a 
permutation



Average Time

• Intuition: Most of the time the first element 
will be in the “middle” of the sequence for a 
random permutation

– Most of the time we have a (quite) balanced split

• Constant probability of an uneven split

– Can increase running time by a constant factor 
only

• Assume nothing gets done on those splits

• “Merge” balanced and unbalanced splits



Average Time

• Theorem:
On a uniformly random permutation/input the 
expected running time of Quicksort is
O(n log n)



Note of Caution

• For any fixed (simple) pivoting rule there are 
still permutations that need time n2

– e.g. pivot is always the minimum

• How to fix this?

• Choose pivot such that the algorithm behaves 
in the same way as for a random permutation!



Randomized Algorithms

• A randomized algorithm is an algorithm that
has access to a source of random numbers

• Different types:

– Measure expected running time

• with respect to the random numbers, NOT the inputs

– Allow errors with some small probability

• We will (for now) consider the first type



Randomized Quicksort

• Use the standard Quicksort,

• BUT choose a random position between l and
r as the pivot

• Theorem: Randomized Quicksort has
(expected) running time O(n log n)



Average Time

• The theorem about randomized Quicksort
implies the theorem about the average case
time bound for deterministic Quicksort

• Reason:

– In any partition step the first element of a random 
permutation and and a random element for a 
fixed permutation behave in the same way



Proof

• Proof (randomized Quicksort)

• We will count the expected number of
comparisons

• Denote by Xij the indicator random variable 
that is 1 if xi is compared to xj

– At any time

– xi is the ith element of the sorted sequence

• Note that all comparisons involve the pivot
element



Proof

• The expected number of comparisons is
E[i=1…n-1 j=i+1…n Xij]
= i=1…n-1j=i+1…n E[Xij]

• E[Xij] is the probability that xi is compared to xj

• Zij is the set of keys between xi and xj

• Claim:
xi is compared with xj iff xi or xj is the first pivot 
chosen among the elements of Zij



Proof

• Pivots are random, i.e.,
Prob(xi first pivot in Zij)=1/(j-i+1)

• E[X
ij
] = 2/(j-i+1)

• Number of comparisons:
i=1…n-1j=i+1…n E[Xij]

= 2i=1…n-1j=i+1…n 1/(j-i+1)
= 2i=1…n-1k=1…n-i 1/(k+1)
<  2i=1…n-1k=1…n   1/k
=O(n log n)        [Harmonic Series]



Proof

• Hence the expected number of comparisons is
O(n log n)

• Easy to see that also the running time is
O(n log n)



How fast can we sort?

• There are deterministic algorithms that sort in 
worst case time O(n log n)

• Do better algorithms exist? 

– Example [Andersson et al. 95]:
On a unit cost RAM, word length w, one can sort n 
integers in the range 0…2w in time O(n loglog n)
Even in O(n) if w>log2 n

– Not comparison based!



A lower bound

• Assume an algorithm uses only comparisons
to access the inputs

– I.e., it can compare A[i] and A[j] but CANNOT
use the sum of A[i] and A[j] or compute A[A[i]]

• Theorem: Any comparison based sorting 
algorithm has to make (n log n) comparisons



Proof:

• We model every algorithm using comparisons
by a Decision Tree

• Decision Trees can access comparisons and 
branch according to the result

• Leaves must display the result

– In our case the result is the permutation needed 
to sort the input sequence



Example



Proof

• Any algorithm based on comparisons can be simulated 
by a decision tree

• The input to the decision tree is the table of n2

comparisons
– at position (i,j) the table contains 1 if xi<xj and 0 if xi¸ xj

– A decision tree is an algorithm that can query the 
comparison table at any position (based on the results of 
previous queries)

– The leafs of the decision tree are labelled with 
permutations ¼ that sort the input sequence

– The depth of the tree is the max number of comparisons 
made during any computation 



Proof

• Fact: There are n! different permutations of n elements
• Lemma: Any decision tree for sorting must have n! 

Leaves
– Every permutation leads to a different output

• Lemma: Any binary tree with n! leaves must have 
depth at least log(n!) =  (n log n)

• Conclusion: Any DT for sorting has depth
(n log n).

• And any comparison based algorithm needs (n log n) 
comparisons to sort


