Theory of Computing

Lecture 2
MAS 714
Hartmut Klauck



Sorting

Computers spend a lot of time sorting!

Assume we have a list of numbers x,,...,x, from a
universe U

For simplicity assume the x; are distinct

The goal is to compute a permutation 7 such that
Xr)S Xr@< 0 < Xen)

Think of a deck of cards

Simple model:
— Input: permutation of 1,...,n
— Output: inverse permutation



Last week: Binary Insertion Sort

e Using binary search in InsertionSort reduces
the number of comparisons to O(n log n)

— The outer loop is executed n times, each inner
loop now uses log n comparisons

* Unfortunately the number of swaps does not
decrease:

— To insert an element we need to shift the
remaining array to the right!



Quicksort

* Quicksort follows the ,,Divide and Conquer”
paradigm

* The algorithm is best described recursively

* |dea:
— Split the sequence into two

* All elements in one sequence are smaller than in the other
— Sort each sequence recursively
— Put them back together



Quicksort

* Quicksort(A,l,r)

— If I=r return A

— Choose a pivot position j between | and r

— u=1,v=1, initialize arrays B,C

— for (i=l...r): If A[i]<A[j] then B[u]=A][i], u++

If A[i]>A[j] then C[v]=A[i], v++

— Run Quicksort(B,1,u) and Quicksort(C,1,v) and
return their output (concatenated), with A[j] in
the middle



How fast is it?

* The quality of the algorithm depends on how
we split up the sequence

* |ntuition:
— Even split will be best
* Questions:

— How are the asymptotics?

— Are approximately even splits good enough?



Worst Case Time

We look at the case when we really just split

into the pivot and the rest (maxima

Let T(n) denote the number of com
for n elements

T(2)=1
T(n) <=T(n-1)+n-1

ly uneven)

narisons

Solving the recurrence gives T(n)=0(n?)



Best Case Time

Best: every pivot splits the sequence in half

T(2)=1
T(n)=2T(n/2)+n-1

Questions:

— How to solve this?
— What if the split is 3/4 vs. 1/4 ?



Recurrences

How to solve simple recurrences
Several techniques
ldea: Consider the recursion tree

For Quicksort every call of the procedure generates
two calls to a smaller Quicksort procedure

— Problem size 1 is solved immediately

Nodes of the tree are labelled with the sequences that
are sorted at that node

The cost of a node is the number of comparisons used
to split the sequence at the node. l.e. is equal to the
length of the sequence at the node minus 1.



LAY, - AT

KPA fl AYA]] a Z [/\(?\/Zuj__\. /\[r\j]



Example: the perfect tree

* |n the best case the sequence length halves->
after log n calls the sequence has length 1

* Depth of the tree is log n
— Number of nodes is O(n)

— But each node has a cost

* nodes on level O cost n-1, on level 1 cost n/2-1 etc.
— For simplicity we assume n is a power of 2

— Level i has 2' nodes of cost n/2'-1
e Total cost is O(n) per level-> O(n log n)



Verifying the guess

 Guess: T(n)<=nlogn

* T(1): T(1)=0=1 log (1)

e T(2): T(2)=1<=2

* T(n) <=2T(n/2) + n-1

<= nlog(n/2) +n-1
<= nlogh—n +n-1
<= nlogn




The Master Theorem

The Master Theorem is a way to get solutions to
recurrences

Theorem:

a,b constant, f(n) function
Recurrence T(n)=a T(n/b) + f(n)
and T(O(1)) constant

1) 4 O(A“”b“u“{) = ()20 " a)
) A1)z () =) Tlw) = O w2y 8)
3){(',\ Jo o (P )757/”);@///“))



The Master Theorem

We omit the proof
Application:
T(n)=9T(n/3)+n

a=9, b=3, f(n)=n, n'°g _(3)=n2

— Case 1 applies, Solution is T(n)=0(n?)



Attempt on the case of uneven splits

* Assume every pivot splits exactly %n vs. n/4
— T(n)=T(3n/4)+T(n/4)+n
 Same idea:
— Nodes on level i have cost at most n/(3/4)’
— There are at most log,; n levels
— What is the total cost of all nodes at a level?

— Note that all K nodes on a level correspond to a
partition of all n inputs into K sets!

— |If sets have size s1,..., sK then comparisons are s1-1+ ...
sK-1
— less than n comparisons on any one level



Quicksort Time

* So if every split is partitioning the sequence
somewhat evenly (99% against 1%) then the
running time is O(n log n)



Average Case Time

e Suppose the pivot is chosen in any fixed way

— Say, the first element

* Claim: the expected running time of Quicksort
is O(n log n)
— Expected over what?

— Chosing a random permutation as the input

e Recall that the input to the sorting problem is a
permutation



Average Time

* Intuition: Most of the time the first element
will be in the “middle” of the sequence for a
random permutation
— Most of the time we have a (quite) balanced split

* Constant probability of an uneven split

— Can increase running time by a constant factor

only
* Assume nothing gets done on those splits
* “Merge” balanced and unbalanced splits



Average Time

e Theorem:

On a uniformly random permutation/input the

expected running time of Quicksort is
O(n log n)



Note of Caution

* For any fixed (simple) pivoting rule there are
still permutations that need time n?

— e.g. pivot is always the minimum
* How to fix this?

* Choose pivot such that the algorithm behaves
in the same way as for a random permutation!



Randomized Algorithms

 Arandomized algorithm is an algorithm that
has access to a source of random numbers

* Different types:

— Measure expected running time
e with respect to the random numbers, NOT the inputs

— Allow errors with some small probability

* We will (for now) consider the first type



Randomized Quicksort

e Use the standard Quicksort,

 BUT choose a random position between | and
r as the pivot

e Theorem: Randomized Quicksort has
(expected) running time O(n log n)



Average Time

e The theorem about randomized Quicksort
implies the theorem about the average case
time bound for deterministic Quicksort

e Reason:

— In any partition step the first element of a random
permutation and and a random element for a
fixed permutation behave in the same way



Proof

Proof (randomized Quicksort)

We will count the expected number of
comparisons

Denote by X; the indicator random variable
that is 1 if x; is compared to x;

— At any time

— X. is the ith element of the sorted sequence

Note that all comparisons involve the pivot
element



Proof

The expected number of comparisons is
E[zi=1...n—1 j=i+1...n Xij]

= Zi=1...n—1zj=i+1...n E[Xij]

E[X;] is the probability that x; is compared to x;
Z; is the set of keys between x; and x;

Claim:

X; is compared with x; iff x; or x; is the first pivot
chosen among the elements of Z;



Proof

e Pivots are random, i.e.,
Prob(x; first pivot in Z;)=1/(j-i+1)
* EIX] = 2/(j-i+1)
* Number of comparisons:
E[X
TS e
=22i1.n 1Zk 1.ni 1/ (k+1)

< ZZ:|—1...n—1Z:k—1...n 1/k
=0(n log n) [Harmonic Series]



Proof

* Hence the expected number of comparisons is
O(n log n)

e Easy to see that also the running time is
O(n log n)



How fast can we sort?

* There are deterministic algorithms that sort in
worst case time O(n log n)

* Do better algorithms exist?

— Example [Andersson et al. 95]:
On a unit cost RAM, word length w, one can sort n
integers in the range 0...2% in time O(n loglog n)
Even in O(n) if w>log? n

— Not comparison based!



A lower bound

 Assume an algorithm uses only comparisons
to access the inputs

— l.e., it can compare A[i] and A[j] but CANNOT
use the sum of A[i] and A[j] or compute A[A[i]]

 Theorem: Any comparison based sorting
algorithm has to make €2(n log n) comparisons



Proof:

* We model every algorithm using comparisons
oy a Decision Tree

* Decision Trees can access comparisons and
oranch according to the result

* Leaves must display the result

— In our case the result is the permutation needed
to sort the input sequence



Example



Proof

* Any algorithm based on comparisons can be simulated
by a decision tree

* The input to the decision tree is the table of n?
comparisons
— at position (i,j) the table contains 1 if x,<x; and 0 if x,> x

— A decision tree is an algorithm that can query the
comparison table at any position (based on the results of
previous queries)

— The leafs of the decision tree are labelled with
permutations 7 that sort the input sequence

— The depth of the tree is the max number of comparisons
made during any computation



Proof

Fact: There are n! different permutations of n elements

Lemma: Any decision tree for sorting must have n!
Leaves

— Every permutation leads to a different output

Lemma: Any binary tree with n! leaves must have
depth at least log(n!) = Q(n log n)

Conclusion: Any DT for sorting has depth
Q(n log n).

And any comparison based algorithm needs C2(n log n)
comparisons to sort



