Theory of Computing

Lecture 3
MAS 714

Hartmut Klauck

How fast can we sort?

* There are deterministic algorithms that sort in
worst case time O(n log n)

* This is best possible for comparison based
algorithms

* Do better algorithms exist?

— Example [Andersson et al. 95]:
On a unit cost RAM, word length w, one can sort n
integers in the range 0...2% in time O(n loglog n)
Even in O(n) if w>log? n

— Not comparison based!

A linear time sorting algorithm

Assume all A[i] are integers between 1 and m

Sorting algorithm:
— fori=1tom
* cli]=0
— fori=1ton
* c[A[i]]=c[A[i]]+1
— fori=1tom
* If c[i]> 0 output i, c[i] times
Clearly this algorithm runs in time O(n+m), linear
if m=0(n)

Algorithm is not comparison based (second loop)

Counting Sort

 The above algorithm has the drawback that it

sorts only a list of numbers (keys), with no other
data attached

* To properly sort (including additional data) we
need to compute where items with key K start in
the sorted sequence and move the data there

* Furthermore we want the algorithm to be stable

— Stability: Items with the same key remain in the same
order

Counting Sort

for i=1 to m: CJ[i]=0 //Initialize

for i=1 to n: C[A[i]]++ //Count elements

Pos[1]=1 //Array of positions

fori=2tom: //Compute positions
Pos|i]=Pos|i-1]+C[i-1]

for i=1 to n: //Produce Output

Output[Pos|[Ali]] = Ali]
Pos[A[i]]++

Counting Sort

* The third loop computes the position Pos|i], at
which elements with key i start in the sorted
array

— Pos[1]=1
— Posli]=Pos][i-1]+CJi-1]
* The fourth loop copies elements A[i] into the
array Output, at the correct positions
— Data Dat|i] attached to the keys may be copied as well

* The algorithm is stable, because we keep
elements with the same key in their original order

Linear time sorting

* Radix sort sorts n integer numbers of size nXin
time O(kn)
e This is linear time for k=0(1)

* |.e., we can sort polynomial size integers in
linear time

Radix Sort

Main Idea:

— Represent n numbers in a number system with
base n

— Given that numbers are size nk the representation
has at most k+1 digits

— Sort by digits from the least significant to the most
significant

— Use a stable sorting algorithm

* For each step use Counting Sort

Radix Sort

Rewrite keys x in the format
Zico.x X N
X is then represented by (x,,..,X,)

Sort the sequence by digit/position O, i.e. sort the
sequence using the x, digits as keys

Stably sort on position 1
etc. for all positions k
Time is O(kn)=0(n) for k=0(1)

Note: not comparison based, only works for
sorting ,,small“ integer numbers

Radix Sort

Correctness:
Let x,y be two numbers in the sequence.

Let x. denote the most significant position on
which they differ

Then step i puts x,y in the right order, and
later steps never change that order (due to
the stability of counting sort)

Further topics about sorting

Time versus space

Sorting on parallel machines

Sorting on word RAMs, faster than nlog n
Deterministic sorting in O(n log n)

Graph Algorithms

* Many beautiful problems and algorithms

* Good setting to study algorithm design
techniques

Graphs

* A graph G=(V,E) consists of a set of vertices V
and a set E of edges. ECV XV

— usually there are n vertices
— usually there are m edges
* Graphs can be undirected (i,j)€E = (j,i)€E
or directed (no such condition)
— Edges of undirected graphs are pairs of vertices

e Edges (i,i) are called selfloops and are often
excluded

Graph problems

 Example: Friendship graph
— Vertices represent people
— Edges are between friends
 Example: What is the largest size of a set S of
vertices such that every pair of vertices in S are
connected
— Clique
 Example: Find a large set of edges so that no
vertex is in more than one edge
— Matching

Graph Rpresentations

* There are two main ways to represent graphs:
— Adjacency Matrix
— Adjacency List

Adjacency Matrix

* The adjacency matrix of a graph G=(V,E) has n
rows and columns labeled with vertices

e Ali,j]=1iff (i,j)e E

* Works for both undirected and directed
graphs

— undirected graphs may use only the entries above
the diagonal

AdjacencyMatrix

* Advantages:
— easy access to edges
— can do linear algebra on the matrix

* Disadvantage:
— not a compact representation of sparse graphs
— sparse means m=0(n?) [or even m=0(n)]

— Algorithms take time n? at least for many
problems

Adjacency List

The adjacency list of G=(V,E) is an array of
length n. Each entry in the array is a list of
edges adjacent to veV

For directed graphs a list of edges starting in v

Size of the representation is O(n+m) entries,
close to optimal

It is harder to find a specific edge
Standard representation for graphs

Linked Lists

The list of vertices adjacent to v has variable length for
different v

Use a linked list

Linked lists are a datastructure to represent sequences
— A linked list consists of nodes

— Each node consists of a cell for data and a pointer

— There is a pointer to the first element

— Last element points to NIL

— Itis easy to add an element into a linked list, and to sequentially
read the list

Advantage over arrays: length is arbitrary/can be changed
Disadvantage: no direct access to edges

Linked List/Adjacency List

 Example of a linked list
~ (= 1= H—wit

e Adjacency list

[y T4
U Uy

g%/ D% 1 E
VIl T\/m
0o 7

Vit ue=

Weighted Graphs

* Graphs often come with weights
— Weights on vertices
— Weights on edges

 Example: Directed Graph with weighted edges

— Represent as a matrix of weights
— Either 0 or oo marks absence of an edge

Example Problem

Single Source Shortest Path (SSSP)

Give a directed graph G with nonnegative edge
weights, a vertex s

— Inputs(V,E) and W: E—> R* and s

Output: the length of the shortest paths in the graph
from s to all other vertices

— Array of n distances

Explanation: A path from s to v is a sequence of edges
(s,vq), (v1,v,)...(v,,V)

The length of a path is the sum of edge weights on the
path

Traversing Graphs

 Example: Finding the exit of a maze

Traversing Graphs

We are given a graph G=(V,E)
Starting vertex s
The goal is to traverse the graph, i.e., to visit each

vertex at least once

— For example to find a marked vertex t or decide if tis
reachable from s

Two variants:
— Breadth First Search (BFS)
— Depth First Search (DFS)

Traversing Graphs

e Common to both procedures:

— Use a datastructure with the following operations:
* Insert a vertex
* Remove a vertex

— Maintain an active vertex (start with s)

— Maintain an array of vertices already visited

— Then:

* Insert all (unvisited) neighbors of the active vertex,
mark it as visited

* Remove a vertex v and make it active

The Datastructure

* We distinguish by the rule that determines the
next active vertex

e Alternative 1: queue
— FIFO (first in first out)

* Alternative 2: stack
— LIFO (last in first out)

Result

e Alternative 1: FIFO
— Breadth First Search

— Neighbors of s will be visited before their
neighbors etc.

e Alternative 2: LIFO
— Depth First Search

— Insert neighbors, last neighbor becomes active,
then insert his neighbors, last neighbor becomes
active etc.

Traversing Graphs

* With both methods eventually all reachable
vertices are visited

e Different applications:

— BFS can be used to find shorted paths in
unweighted graphs

— DFS can be used to topologically sort a directed
acyclic graph

Datastructures: Queue

* A queue is a linked list together with two
operations

— Insert: Insert an element at the rear of the queue
— Remove: Remove the front element of the queue
* Implementations is as a linked list

— We need a pointer to the rear and a pointer to the
front

BFS

* Every time we put a vertex v into the queue,
we also remember the predecessor of v, i.e.,
the vertex m(v) as who's neighbor v was

queued

 And remember d(v), which will be the
distance of v from s

BFS

* Procedure:
— For all v:
e visit(v)=0, d(v)=00,7(v)=NIL
— d(s)=0
— Enter s into the queue Q
— While Q is not empty

e Remove v from Q

* visit(v)=1, enter all neighbors w of v with visit(w)=0
into Q and set m(w)=v, d(w)=d(v)+1

BFS

e Clearly the running time of BFS is O(m+n)
— n to go over all vertices
— m to check all neighbors
— Each queue operation takes constant time

e BFS runsin linear time

BFS tree

e Consider all edges (7(v), v)

e Claim: These edges form a tree

* This tree is called the BFS tree of G (from s)

— vertices not reachable from s are not in the tree

BFS tree

* Proof (of Claim):
— Each visited vertex has 1 predecessor (except s)
— V., is the set of visited vertices
— Graph is directed
— There are |V.-1| edges
— Hence the edges form a tree

Shortest Paths

* BFS can be used to compute shortest paths
— in unweighted graphs

e Definition:
— Graph G, vertex s

— 0c(s,v) is the minimum number of edges in any
path fromstov
* No path: oo

Shortest Paths

* Lemma:
— Let (u,v) be an edge
—Then: 0d(s,v)<o(s,u)+1

 Proof: vis reachable = uis reachable

— Shortest path from s to u cannot be longer than
shortest path from s to v plus one edge

* Triangle inequality

Shortest Paths

* Lemma:
— The values d(v) computed by BFS are the o(s,v)

* Proof:
— First, show that d(v)>d(s,v)

— Induction over the number of steps
e Surely true in the beginning
* Suppose true, when we queue a vertex
* Then also true for the neighbors

Shortest Paths

Now we show that d(v)<<o(s,Vv)

Observation: For all vertices in Q, d(v) is only
different by 1 (and Q has increasing d(v) by
position in Q)

Now assume that d(v)>d(s,v) for some v

— Choose some v with minimum 9d(s,v)<d(v)

v is reachable from s (otherwise d(s,v)=00)

Consider the predecessor u of v on a shortest
pathstov

— d(s,v)=0(s,u)+1

Shortest Paths

o d(v)>d(s,v)=0(s,u)+1=d(u)+1
— Because v is minimal “violator”
At some point u is removed from the queue

— If vis unvisited and not in the queue, then d(v)=d(u)+1

— If v is visited already then by our observation
d(v)< d(u)

— If v is unvisited, and in the queue, then
d(v)< d(u)+1 (observation)

* Contradiction in any case

Shortest Paths

* Lemma: The BFS tree is a shortest path tree

* Proof:
— We already saw it is a tree
— (m(v),v) is always a graph edge
— d(v) is the depth in the BFS tree

* Induction: true for s
e True for level d = when v is added in level d+1 then
d(v)=d+1

— Hence a path from the root s following tree edges
is a shortest path (has length d(v))

BFS

* Runs in time O(m+n) on adjacency lists
* Visits every vertex reachable from s

* Can be used to compute shortest paths from s
to all other vertices in directed, unweighted

graphs

