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How fast can we sort?

• There are deterministic algorithms that sort in 
worst case time O(n log n)

• This is best possible for comparison based 
algorithms

• Do better algorithms exist? 
– Example [Andersson et al. 95]:

On a unit cost RAM, word length w, one can sort n 
integers in the range 0…2w in time O(n loglog n)
Even in O(n) if w>log2 n

– Not comparison based!



A linear time sorting algorithm

• Assume all A[i] are integers between 1 and m
• Sorting algorithm:

– for i=1 to m
• c[i]=0

– for i=1 to n
• c[A[i]]=c[A[i]]+1

– for i=1 to m
• If c[i]> 0 output i, c[i] times

• Clearly this algorithm runs in time O(n+m), linear 
if m=O(n)

• Algorithm is not comparison based (second loop)



Counting Sort

• The above algorithm has the drawback that it
sorts only a list of numbers (keys), with no other
data attached

• To properly sort (including additional data) we
need to compute where items with key K start in 
the sorted sequence and move the data there

• Furthermore we want the algorithm to be stable

– Stability: Items with the same key remain in the same 
order



Counting Sort

• for i=1 to m: C[i]=0                   //Initialize

• for i=1 to n:  C[A[i]]++             //Count elements

• Pos[1]=1                                    //Array of positions

• for i = 2 to m:                           //Compute positions 
Pos[i]=Pos[i-1]+C[i-1] 

• for i=1 to n:                              //Produce Output
Output[Pos[A[i]] = A[i]
Pos[A[i]]++



Counting Sort

• The third loop computes the position Pos[i], at 
which elements with key i start in the sorted 
array
– Pos[1]=1

– Pos[i]=Pos[i-1]+C[i-1]

• The fourth loop copies elements A[i] into the 
array Output, at the correct positions
– Data Dat[i] attached to the keys may be copied as well 

• The algorithm is stable, because we keep 
elements with the same key in their original order



Linear time sorting

• Radix sort sorts n integer numbers of size nk in 
time O(kn)

• This is linear time for k=O(1)

• I.e., we can sort polynomial size integers in 
linear time



Radix Sort

• Main Idea:

– Represent n numbers in a number system with 
base n

– Given that numbers are size nk the representation 
has at most k+1 digits

– Sort by digits from the least significant to the most 
significant

– Use a stable sorting algorithm

• For each step use Counting Sort



Radix Sort

• Rewrite keys x in the format
i=0…k xi ni

• x is then represented by (xk,..,x0)
• Sort the sequence by digit/position 0, i.e. sort the

sequence using the x0 digits as keys
• Stably sort on position 1
• etc. for all positions k
• Time is O(kn)=O(n) for k=O(1)
• Note: not comparison based, only works for

sorting „small“ integer numbers



Radix Sort

• Correctness:

• Let x,y be two numbers in the sequence.

• Let xi denote the most significant position on 
which they differ

• Then step i puts x,y in the right order, and
later steps never change that order (due to
the stability of counting sort)



Further topics about sorting

• Time versus space

• Sorting on parallel machines

• Sorting on word RAMs, faster than n log n

• Deterministic sorting in O(n log n)



Graph Algorithms

• Many beautiful problems and algorithms

• Good setting to study algorithm design 
techniques



Graphs

• A graph G=(V,E) consists of a set of vertices V 
and a set E of edges. EµV£V
– usually there are n vertices

– usually there are m edges

• Graphs can be undirected (i,j)2E ) (j,i)2E
or directed (no such condition)
– Edges of undirected graphs are pairs of vertices

• Edges (i,i) are called selfloops and are often
excluded



Graph problems

• Example: Friendship graph
– Vertices represent people

– Edges are between friends

• Example: What is the largest size of a set S of 
vertices such that every pair of vertices in S are 
connected
– Clique

• Example: Find a large set of edges so that no 
vertex is in more than one edge
– Matching



Graph Rpresentations

• There are two main ways to represent graphs:

– Adjacency Matrix

– Adjacency List



Adjacency Matrix

• The adjacency matrix of a graph G=(V,E) has n 
rows and columns labeled with vertices

• A[i,j]=1 iff (i,j)2 E

• Works for both undirected and directed
graphs

– undirected graphs may use only the entries above 
the diagonal 



AdjacencyMatrix

• Advantages:

– easy access to edges

– can do linear algebra on the matrix

• Disadvantage:

– not a compact representation of sparse graphs

– sparse means m=o(n2)  [or even m=O(n)]

– Algorithms take time n2 at least for many 
problems



Adjacency List

• The adjacency list of G=(V,E) is an array of
length n. Each entry in the array is a list of
edges adjacent to v2V

• For directed graphs a list of edges starting in v

• Size of the representation is O(n+m) entries, 
close to optimal

• It is harder to find a specific edge

• Standard representation for graphs



Linked Lists

• The list of vertices adjacent to v has variable length for
different v

• Use a linked list
• Linked lists are a datastructure to represent sequences

– A linked list consists of nodes
– Each node consists of a cell for data and a pointer
– There is a pointer to the first element
– Last element points to NIL
– It is easy to add an element into a linked list, and to sequentially

read the list

• Advantage over arrays: length is arbitrary/can be changed
• Disadvantage: no direct access to edges



Linked List/Adjacency List

• Example of a linked list

• Adjacency list



Weighted Graphs

• Graphs often come with weights

– Weights on vertices

– Weights on edges

• Example: Directed Graph with weighted edges

– Represent as a matrix of weights

– Either 0 or1marks absence of an edge



Example Problem

• Single Source Shortest Path (SSSP)
• Give a directed graph G with nonnegative edge

weights, a vertex s
– Inputs(V,E) and W: E→ R+  and s

• Output: the length of the shortest paths in the graph
from s to all other vertices
– Array of n distances

• Explanation: A path from s to v is a sequence of edges
(s,v1), (v1,v2)…(vt,v)

• The length of a path is the sum of edge weights on the
path



Traversing Graphs

• Example: Finding the exit of a maze



Traversing Graphs

• We are given a graph G=(V,E)
• Starting vertex s
• The goal is to traverse the graph, i.e., to visit each

vertex at least once
– For example to find a marked vertex t or decide if t is

reachable from s

• Two variants:
– Breadth First Search (BFS)
– Depth First Search (DFS)



Traversing Graphs

• Common to both procedures:
– Use a datastructure with the following operations:

• Insert a vertex

• Remove a vertex

– Maintain an active vertex (start with s)

– Maintain an array of vertices already visited

– Then:
• Insert all (unvisited) neighbors of the active vertex, 

mark it as visited

• Remove a vertex v and make it active



The Datastructure

• We distinguish by the rule that determines the
next active vertex

• Alternative 1: queue

– FIFO (first in first out)

• Alternative 2: stack

– LIFO (last in first out)



Result

• Alternative 1: FIFO
– Breadth First Search
– Neighbors of s will be visited before their

neighbors etc.

• Alternative 2: LIFO
– Depth First Search
– Insert neighbors, last neighbor becomes active, 

then insert his neighbors, last neighbor becomes
active etc.



Traversing Graphs

• With both methods eventually all reachable
vertices are visited

• Different applications:
– BFS can be used to find shorted paths in 

unweighted graphs

– DFS can be used to topologically sort a directed
acyclic graph



Datastructures: Queue 

• A queue is a linked list together with two 
operations

– Insert: Insert an element at the rear of the queue

– Remove: Remove the front element of the queue

• Implementations is as a linked list

– We need a pointer to the rear and a pointer to the 
front



BFS

• Every time we put a vertex v into the queue, 
we also remember the predecessor of v, i.e., 
the vertex ¼(v) as who‘s neighbor v was 
queued

• And remember d(v), which will be the 
distance of v from s



BFS

• Procedure:

– For all v:

• visit(v)=0, d(v)=1,¼(v)=NIL

– d(s)=0

– Enter s into the queue Q

– While Q is not empty

• Remove v from Q

• visit(v)=1, enter all neighbors w of v with visit(w)=0  
into Q and set ¼(w)=v, d(w)=d(v)+1



BFS

• Clearly the running time of BFS is O(m+n)

– n to go over all vertices

– m to check all neighbors

– Each queue operation takes constant time

• BFS runs in linear time



BFS tree

• Consider all edges (¼(v), v)

• Claim: These edges form a tree

• This tree is called the BFS tree of G (from s)

– vertices not reachable from s are not in the tree



BFS tree

• Proof (of Claim):

– Each visited vertex has 1 predecessor (except s)

– Vs is the set of visited vertices

– Graph is directed

– There are |Vs-1| edges

– Hence the edges form a tree



Shortest Paths

• BFS can be used to compute shortest paths

– in unweighted graphs

• Definition:

– Graph G, vertex s

– ±G(s,v) is the minimum number of edges in any 
path from s to v

• No path: 1



Shortest Paths

• Lemma:

– Let (u,v) be an edge

– Then:    ±(s,v)·±(s,u)+1

• Proof: v is reachable ) u is reachable

– Shortest path from s to u cannot be longer than 
shortest path from s to v plus one edge

• Triangle inequality



Shortest Paths

• Lemma:

– The values d(v) computed by BFS are the ±(s,v)

• Proof:

– First, show that d(v)¸±(s,v)

– Induction over the number of steps

• Surely true in the beginning

• Suppose true, when we queue a vertex

• Then also true for the neighbors



Shortest Paths

• Now we show that d(v)·±(s,v)
• Observation: For all vertices in Q, d(v) is only 

different by 1 (and Q has increasing d(v) by 
position in Q)

• Now assume that d(v)>±(s,v) for some v
– Choose some v with minimum ±(s,v)<d(v) 

• v is reachable from s (otherwise ±(s,v)=1)
• Consider the predecessor u of v on a shortest 

path s to v
– ±(s,v)=±(s,u)+1



Shortest Paths

• d(v)>±(s,v)=±(s,u)+1=d(u)+1

– Because v is minimal “violator”

• At some point u is removed from the queue

– If v is unvisited and not in the queue, then d(v)=d(u)+1

– If v is visited already then by our observation
d(v)· d(u)

– If v is unvisited, and in the queue, then
d(v)· d(u)+1 (observation)

• Contradiction in any case



Shortest Paths

• Lemma: The BFS tree is a shortest path tree

• Proof: 
– We already saw it is a tree

– (¼(v),v) is always a graph edge

– d(v) is the depth in the BFS tree
• Induction: true for s

• True for level d ) when v is added in level d+1 then
d(v)=d+1

– Hence a path from the root s following tree edges
is a shortest path (has length d(v))



BFS

• Runs in time O(m+n) on adjacency lists

• Visits every vertex reachable from s

• Can be used to compute shortest paths from s 
to all other vertices in directed, unweighted
graphs


