Theory of Computing

Lecture 4 MAS 714 Hartmut Klauck

Traversing Graphs

- Common to BFS/DFS:
 - Use a datastructure with the following operations:
 - Insert a vertex
 - Remove a vertex
 - Maintain an active vertex (start with s)
 - Maintain an array of vertices already visited
 - Then:
 - Insert all (unvisited) neighbors of the active vertex, mark it as visited
 - Remove a vertex v and make it active

The Datastructure

• We distinguish by the rule that determines the next active vertex

- Alternative 1: queue
 FIFO (first in first out)
- Alternative 2: stack
 LIFO (last in first out)

Datastructures: Queue

- A queue is a linked list together with two operations
 - Insert: Insert an element at the rear of the queue
 - Remove: Remove the front element of the queue
- Implementations is as a linked list
 - We need a pointer to the rear and a pointer to the front

- Every time we put a vertex v into the queue, we also remember the predecessor of v, i.e., the vertex π(v) as who's neighbor v was queued
- And remember d(v), which will be the distance of v from s

- Procedure:
 - For all v:
 - visit(v)=0, d(v)= $\infty,\pi(v)$ =NIL
 - d(s)=0
 - Enter s into the queue Q
 - While Q is not empty
 - Remove v from Q
 - visit(v)=1, enter all neighbors w of v with visit(w)=0 into Q and set π(w)=v, d(w)=d(v)+1

- Clearly the running time of BFS is O(m+n)
 - n to go over all vertices
 - m to check all neighbors
 - Each queue operation takes constant time
- BFS runs in linear time

BFS tree

- Consider all edges ($\pi(v)$, v)
- Claim: These edges form a tree

This tree is called the BFS tree of G (from s)
 – vertices not reachable from s are not in the tree

BFS tree

- Proof (of Claim):
 - Each visited vertex has 1 predecessor (except s)
 - $-V_s$ is the set of visited vertices
 - Graph is directed
 - There are $|V_s-1|$ edges
 - Hence the edges form a tree

- BFS can be used to compute shortest paths

 in unweighted graphs
- Definition:
 - Graph G, vertex s
 - $\delta_G(s,v)$ is the minimum number of edges in any path from s to v
 - No path: ∞

- Lemma:
 - Let (u,v) be an edge
 - Then: $\delta(s,v) \leq \delta(s,u) + 1$

- Proof: v is reachable \Rightarrow u is reachable
 - Shortest path from s to u cannot be longer than shortest path from s to v plus one edge
 - Triangle inequality

- Lemma:
 - The values d(v) computed by BFS are the δ (s,v)
- Proof:
 - First, show that $d(v) \ge \delta(s,v)$
 - Induction over the number of steps
 - Surely true in the beginning
 - Suppose true, when we queue a vertex
 - Then also true for the neighbors

- Now we show that $d(v) \leq \delta(s,v)$
- Observation: For all vertices in Q, d(v) is only different by 1 (and Q has increasing d(v) by position in Q)
- Now assume that d(v)>δ(s,v) for some v
 Choose some v with minimum δ(s,v)<d(v)
- v is reachable from s (otherwise $\delta(s,v)=\infty$)
- Consider the predecessor u of v on a shortest path s to v
 - $\delta(s,v)=\delta(s,u)+1$

• $d(v) > \delta(s,v) = \delta(s,u) + 1 = d(u) + 1$

Because v is minimal "violator"

- At some point u is removed from the queue
 - If v is unvisited and not in the queue, then d(v)=d(u)+1
 - If v is visited already then by our observation $d(v) {\leq} d(u)$
 - If v is unvisited, and in the queue, then $d(v) \le d(u)+1$ (observation)
- Contradiction in any case

- Lemma: The BFS tree is a shortest path tree
- Proof:
 - We already saw it is a tree
 - $-(\pi(v),v)$ is always a graph edge
 - d(v) is the depth in the BFS tree
 - Induction: true for s
 - True for level d \Rightarrow when v is added in level d+1 then d(v)=d+1
 - Hence a path from the root s following tree edges is a shortest path (has length d(v))

- Runs in time O(m+n) on adjacency lists
- Visits every vertex reachable from s
- Can be used to compute shortest paths from s to all other vertices in directed, unweighted graphs

Depth First Search

- If we use a *stack* as datastructure we get Depth First Search (DFS)
- Typically, DFS will maintain some extra information:
 - Time when v is put on the stack
 - Time, when all neighbors of v have been examined
- This information is useful for applications

Datastructure: Stack

- A stack is a linked list together with two operations
 - push(x,S): Insert element x at the front of the list S
 - pop(S): Remove the front element of the list S
- Implementation:
 - Need to maintain only the pointer to the front of the stack
 - Useful to also have
 - peek(S): Find the front element but don't remove

Digression: Recursion and Stacks

- Our model of Random Access Machines does not directly allow recursion
 - Neither does any real hardware
- Compilers will "roll out" recursive calls
 - Put all local variables of the calling procedure in a safe place
 - Execute the call
 - Return the result and restore the local variables

Recursion

- The best datastructure for this is a stack
 - Push all local variables to the stack
 - LIFO functionality is exactly the right thing
- Example: Recursion tree of Quicksort

DFS

- Procedure:
 - 1. For all v:
 - π(v)=NIL, d(v)=0, f(v)=0
 - 2. Enter s into the stack S, set TIME=1, d(s)=TIME
 - 3. While S is not empty
 - a) v=peek(S)
 - b) Find the first neighbor w of v with d(w)=0:
 - push(w,S) , π (w)=v, TIME=TIME+1, d(w)=TIME
 - c) If there is no such w: pop(S), TIME=TIME+1, f(v)=TIME

DFS

- The array d(v) holds the time we first visit a vertex.
- The array f(v) holds the time when all neighbors of v have been processed
- "discovery" and "finish"
- In particular, when d(v)=0 then v has not been found yet

Simple Observations

- Vertices are given d(v) numbers between 1 and 2n
- Each vertex is put on the stack once, and receives the f(v) number once all neighbors are visited
- Running time is O(n+m)

Edge labelleing

- We will classify edges
 - The edges in (π (v),v) form trees: tree edges
 - We can label all other edges as
 - back edges
 - cross edges
 - forward edges

Edge classification

- Lemma: the edges $(\pi(v), v)$ form a tree
- Definition:
 - Edges going down along a path in a tree (but not tree edge) are *forward edges*
 - Edges going up along a path in a tree are back edges
 - Edges across paths/tree are cross edges
- A vertex v is a *descendant* of u if there is a path of tree edges from u to v
- Observation: descendants are discovered after their "ancestors" but finish before them

Example: edge labeling

 Tree edges, Back edges, Forward edges, Cross edges