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Traversing Graphs

• Common to BFS/DFS:
– Use a datastructure with the following operations:

• Insert a vertex

• Remove a vertex

– Maintain an active vertex (start with s)

– Maintain an array of vertices already visited

– Then:
• Insert all (unvisited) neighbors of the active vertex, 

mark it as visited

• Remove a vertex v and make it active



The Datastructure

• We distinguish by the rule that determines the
next active vertex

• Alternative 1: queue

– FIFO (first in first out)

• Alternative 2: stack

– LIFO (last in first out)



Datastructures: Queue 

• A queue is a linked list together with two 
operations

– Insert: Insert an element at the rear of the queue

– Remove: Remove the front element of the queue

• Implementations is as a linked list

– We need a pointer to the rear and a pointer to the 
front



BFS

• Every time we put a vertex v into the queue, 
we also remember the predecessor of v, i.e., 
the vertex ¼(v) as who‘s neighbor v was 
queued

• And remember d(v), which will be the 
distance of v from s



BFS

• Procedure:

– For all v:

• visit(v)=0, d(v)=1,¼(v)=NIL

– d(s)=0

– Enter s into the queue Q

– While Q is not empty

• Remove v from Q

• visit(v)=1, enter all neighbors w of v with visit(w)=0  
into Q and set ¼(w)=v, d(w)=d(v)+1



BFS

• Clearly the running time of BFS is O(m+n)

– n to go over all vertices

– m to check all neighbors

– Each queue operation takes constant time

• BFS runs in linear time



BFS tree

• Consider all edges (¼(v), v)

• Claim: These edges form a tree

• This tree is called the BFS tree of G (from s)

– vertices not reachable from s are not in the tree



BFS tree

• Proof (of Claim):

– Each visited vertex has 1 predecessor (except s)

– Vs is the set of visited vertices

– Graph is directed

– There are |Vs-1| edges

– Hence the edges form a tree



Shortest Paths

• BFS can be used to compute shortest paths

– in unweighted graphs

• Definition:

– Graph G, vertex s

– ±G(s,v) is the minimum number of edges in any 
path from s to v

• No path: 1



Shortest Paths

• Lemma:

– Let (u,v) be an edge

– Then:    ±(s,v)·±(s,u)+1

• Proof: v is reachable ) u is reachable

– Shortest path from s to u cannot be longer than 
shortest path from s to v plus one edge

• Triangle inequality



Shortest Paths

• Lemma:

– The values d(v) computed by BFS are the ±(s,v)

• Proof:

– First, show that d(v)¸±(s,v)

– Induction over the number of steps

• Surely true in the beginning

• Suppose true, when we queue a vertex

• Then also true for the neighbors



Shortest Paths

• Now we show that d(v)·±(s,v)
• Observation: For all vertices in Q, d(v) is only 

different by 1 (and Q has increasing d(v) by 
position in Q)

• Now assume that d(v)>±(s,v) for some v
– Choose some v with minimum ±(s,v)<d(v) 

• v is reachable from s (otherwise ±(s,v)=1)
• Consider the predecessor u of v on a shortest 

path s to v
– ±(s,v)=±(s,u)+1



Shortest Paths

• d(v)>±(s,v)=±(s,u)+1=d(u)+1

– Because v is minimal “violator”

• At some point u is removed from the queue

– If v is unvisited and not in the queue, then d(v)=d(u)+1

– If v is visited already then by our observation
d(v)· d(u)

– If v is unvisited, and in the queue, then
d(v)· d(u)+1 (observation)

• Contradiction in any case



Shortest Paths

• Lemma: The BFS tree is a shortest path tree

• Proof: 
– We already saw it is a tree

– (¼(v),v) is always a graph edge

– d(v) is the depth in the BFS tree
• Induction: true for s

• True for level d ) when v is added in level d+1 then
d(v)=d+1

– Hence a path from the root s following tree edges
is a shortest path (has length d(v))



BFS

• Runs in time O(m+n) on adjacency lists

• Visits every vertex reachable from s

• Can be used to compute shortest paths from s 
to all other vertices in directed, unweighted
graphs



Depth First Search

• If we use a stack as datastructure we get 
Depth First Search (DFS)

• Typically, DFS will maintain some extra 
information:

– Time when v is put on the stack

– Time, when all neighbors of v have been examined

• This information is useful for applications



Datastructure: Stack

• A stack is a linked list together with two 
operations
– push(x,S): Insert element x at the front of the list S

– pop(S): Remove the front element of the list S

• Implementation:
– Need to maintain only the pointer to the front of 

the stack

– Useful to also have 
• peek(S): Find the front element but don’t remove



Digression: Recursion and Stacks

• Our model of Random Access Machines does 
not directly allow recursion

– Neither does any real hardware

• Compilers will “roll out” recursive calls

– Put all local variables of the calling procedure in a 
safe place

– Execute the call

– Return the result and restore the local variables



Recursion

• The best datastructure for this is a stack

– Push all local variables to the stack

– LIFO functionality is exactly the right thing

• Example: Recursion tree of Quicksort



DFS

• Procedure:

1. For all v:

• ¼(v)=NIL, d(v)=0, f(v)=0

2. Enter s into the stack S, set TIME=1, d(s)=TIME

3. While S is not empty

a) v=peek(S)

b) Find the first neighbor w of v with d(w)=0:
– push(w,S) , ¼(w)=v, TIME=TIME+1, d(w)=TIME

c) If there is no such w: pop(S), TIME=TIME+1, f(v)=TIME



DFS

• The array d(v) holds the time we first visit a 
vertex.

• The array f(v) holds the time when all 
neighbors of v have been processed

• “discovery” and “finish”

• In particular, when d(v)=0 then v has not been 
found yet



Simple Observations

• Vertices are given d(v) numbers between
1 and 2n

• Each vertex is put on the stack once, and 
receives the f(v) number once all neighbors 
are visited

• Running time is O(n+m)



Edge labelleing

• We will classify edges

– The edges in (¼(v),v) form trees: tree edges

– We can label all other edges as

• back edges

• cross edges

• forward edges



Edge classification

• Lemma: the edges (¼(v),v) form a tree
• Definition: 

– Edges going down along a path in a tree (but not tree 
edge) are forward edges

– Edges going up along a path in a tree are
back edges

– Edges across paths/tree are 
cross edges

• A vertex v is a descendant of u if there is a path of tree 
edges from u to v

• Observation: descendants are discovered after their 
“ancestors” but finish before them



Example: edge labeling

• Tree edges, Back edges, Forward edges, 
Cross edges


