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Abstract. We prove lower bounds on the bounded error quantum communication complexity.
Our methods are based on the Fourier transform of the considered functions. First we generalize
a method for proving classical communication complexity lower bounds developed by Raz [35] to
the quantum case. Applying this method we give an exponential separation between bounded error
quantum communication complexity and nondeterministic quantum communication complexity. We
develop several other lower bound methods based on the Fourier transform, notably showing that
√

s̄(f)/ log n, for the average sensitivity s̄(f) of a function f , yields a lower bound on the bounded

error quantum communication complexity of f((x∧ y)⊕ z), where x is a Boolean word held by Alice
and y, z are Boolean words held by Bob. We then prove the first large lower bounds on the bounded
error quantum communication complexity of functions, for which a polynomial quantum speedup
is possible. For all the functions we investigate, the only previously applied general lower bound
method based on discrepancy yields bounds that are O(log n).
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1. Introduction. Quantum mechanical computing and communication has been
studied extensively during the last decade. Communication has to be a physical
process, so an investigation of the properties of physically allowed communication is
desirable, and the fundamental theory of physics available to us is quantum mechanics.

The theory of communication complexity deals with the question how efficiently
communication problems can be solved, and has various applications to lower bound
proofs for other resources (an introduction to (classical) communication complexity
can be found in Kushilevitz and Nisan’s excellent monograph [29]).

In a quantum protocol (as defined by Yao [41]) two players Alice and Bob each
receive an input, and have to compute some function defined on the pair of inputs
cooperatively. To this end they exchange messages consisting of qubits, until the result
can be produced from some measurement done by one of the players (for surveys about
quantum communication complexity see [39, 10, 25]).

It is known that quantum communication protocols can sometimes be substan-
tially more efficient than classical probabilistic protocols: The most prominent exam-
ple of such a function is the disjointness problem DISJn, in which the players receive
incidence vectors x, y of subsets of {1, . . . , n}, and have to decide whether the sets are
disjoint: ¬∨(xi ∧ yi). By an application of Grover’s search algorithm [19] to com-
munication complexity given by Buhrman et al. [11] an upper bound of O(

√
n log n)

holds for the bounded error quantum communication complexity of DISJn. This
upper bound has been improved to O(

√
nclog

∗ n) for a constant c by Høyer and de
Wolf [22] and finally to O(

√
n) by Aaronson and Ambainis [1]. The classical bounded

error communication complexity of DISJn on the other hand is Ω(n) by a bound due
to Kalyanasundaram and Schnitger [24]. The quantum protocol for DISJn yields the
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largest gap between quantum and classical communication complexity known so far
for a total function. For partial functions and so-called sampling problems even ex-
ponential gaps between quantum and classical communication complexity are known,
see [36, 11, 3].

Unfortunately only few lower bound methods for quantum communication com-
plexity are known: the logarithm of the rank of the communication matrix is known
as a lower bound for exact (i.e., errorless) quantum communication [11, 12], the (in
applications often weak) discrepancy method can be used to give lower bounds for
protocols with error as shown by Kremer [28]. Buhrman and de Wolf [12] observed
that lower bounds on the minimum rank of matrices approximating the communica-
tion matrix give bounded error quantum lower bounds, but were not able to apply
this method to any explicit function1. In this paper we introduce several lower bound
methods for bounded error quantum communication complexity exploiting algebraic
properties of the communication matrix.

Let IPn denote the inner product modulo 2 function, i.e.,

IPn(x, y) =

n
⊕

i=1

(xi ∧ yi).

Known results about the discrepancy of the inner product function under the
uniform distribution then imply that quantum protocols for IPn with error 1/2−ǫ have
complexity Ω(n/2 − log(1/ǫ)), see [28] (actually only a linear lower bound assuming
constant error is proved there, but minor modifications give the stated result). The
inner product function appears to be the only explicit function, for which a large lower
bound on the bounded error quantum communication complexity has been published
prior to the present paper.

We prove new lower bounds on the bounded error quantum communication com-
plexity of several functions. These bounds are exponentially bigger than the bounds
obtainable by the discrepancy method. Note that we do not consider the model
of quantum communication with prior entanglement here (as defined by Cleve and
Buhrman [13]).

Our results are as follows. First we generalize a lower bound method developed by
Raz [35] for classical bounded error protocols to the quantum case. The lower bound
is given in terms of the sum of absolute values of selected Fourier coefficients of the
function. To be able to generalize this method we have to decompose the quantum
protocol into a “small” set of weighted monochromatic rectangles, so that the sum
of these approximates the communication matrix. Opposed to the classical case the
weights may be negative, but all weights have absolute value at most 1.

Applying the method we get a lower bound of Ω(n/ log n) for the bounded error

quantum communication complexity of the Boolean function HAM
n/2
n , where

HAM t
n(x, y) = 1 ⇐⇒ dist(x, y) 6= t ⇐⇒

∑

i

(xi ⊕ yi) 6= t,

for binary strings x, y of length n and the Hamming distance dist. We then show,
using methods of de Wolf [40], that the nondeterministic (i.e., one-sided unbounded

1A recent result by Razborov [37] (published subsequently to the conference version of the present
paper) implies such lower bounds for a limited class of functions, and gives a tight characterization of
the bounded error quantum communication complexity of functions f(x, y) = g(x ∧ y), also settling
the complexity of the Disjointness problem to Θ(

√
n).
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error) quantum communication complexity of HAM
n/2
n is O(log n). So we get an

exponential gap between the nondeterministic quantum and bounded error quantum
complexities. Since it is also known that the equality function EQn has (classical)
bounded error protocols with O(log n) communication [29], while its nondeterministic
quantum communication complexity is Θ(n) [40], we get the following separation.

Let BQP denote the bounded error quantum communication complexity, NQP
the nondeterministic quantum communication complexity (see section 2.2 for defini-
tions).

Corollary 1.1. There are total Boolean functions HAM
n/2
n , EQn on 2n inputs

each, such that

1. NQC(HAM
n/2
n ) = O(log n) and BQC(HAM

n/2
n ) = Ω(n/ log n),

2. BQC(EQn) = O(log n) and NQC(EQn) = Ω(n).

Furthermore we give quite tight lower and upper bounds for HAM t
n for general

values of t, establishing that bounded error quantum communication does not give
a significant speedup compared to classical bounded error communication for these
problems. These bounds also hold for testing whether the Hamming distance is at
most t instead of equal to t.

Corollary 1.2. Let t : IN → IN be any monotone increasing function with
t(n) ≤ n/2. Then

1. BQC(HAM
t(n)
n ) ≥ Ω

(

t(n)
log t(n) + log n

)

.

2. BPC(HAM
t(n)
n ) = O(t(n) log n).

We then turn to several other techniques for proving lower bounds, which are also
based on the Fourier transform. We concentrate on functions f(x, y) = g(x ⋄ y), for
⋄ ∈ {∧,⊕}, the bitwise conjunction and parity operators. We prove that for ⋄ = ∧, if
we choose any Fourier coefficient ĝz of g, then |z|/(1 − log |ĝz|) yields a lower bound
on the bounded error quantum communication complexity of f . Averaging over all
coefficients leads to a bound given by the average sensitivity of g divided by the
entropy of the squared Fourier coefficients. We then show another bound for ⋄ = ⊕
in terms of the entropy of the Fourier coefficients and obtain a result solely in terms
of the average sensitivity by combining both results.

Corollary 1.3. For all functions f , so that both g(x ∧ y) and g(x ⊕ y) with
g : {0, 1}n → {0, 1} reduce to f :

BQC(f) = Ω

(
√

s̄(g)

log n

)

.

If e.g. f(x, y, z) = g((x ∧ y) ⊕ z), with x held by Alice and y, z held by Bob,
the required reductions are trivial. For many functions, e.g. for g being the majority
function, it is easy to reduce g(x ⊕ y) on 2 · n inputs directly to g(x ∧ y) on slightly
more inputs using xi ⊕ yi = ¬xi ∧ yi + xi ∧ ¬yi (plus the addition of a few dummy
variables), and so the lower bound of Corollary 1.3 can sometimes be used for g(x∧y).
Note that unlike in Razborov’s recent bounds in [37] the function g does not need to
be symmetric.

We then modify the lower bound methods, and show how we may replace the
Fourier coefficients by the singular values of the communication matrix (divided by
2n). This means that we may replace the Fourier transform by other unitary trans-
forms and sometimes get much stronger lower bounds.
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Application of the new methods to the Boolean function

MAJn(x, y) = 1 ⇐⇒
∑

i

(xi ∧ yi) ≥ n/2

yields a lower bound of Ω(n/ log n) for its bounded error quantum communication
complexity. MAJn is a function for which neither bounded error quantum nor non-
deterministic quantum protocols are efficient, while the discrepancy bound is still only
O(log n).

We apply the same approach to

COUNT t
n(x, y) = 1 ⇐⇒

∑

i

(xi ∧ yi) = t.

These functions have a classical complexity of Θ(n) for all t ≤ n/2, since one can
easily reduce the disjointness problem to these functions (DISJn is COUNT 0

n). We
show the following:

Corollary 1.4.
1. Ω(n1−ǫ/ log n) ≤ BQC(COUNTn1−ǫ

n ) ≤ O(n1−ǫ/2 log n).
2. BPC(COUNT t

n) = Θ(n) for all t ≤ n/2.
These are the first lower bounds for functions which allow a polynomial quantum

speedup.
Prior to this paper the only known general method for proving lower bounds

for the bounded error quantum communication complexity has been the discrepancy
method. We show that for any application of the discrepancy bound toHAM t

n,MAJn,
and COUNT t

n, the result is only O(log n). To do so we characterize the discrepancy
bound within a constant multiplicative factor and an additive log-factor as the clas-
sical weakly unbounded error communication complexity UPC (see sections 2.2/2.4
for definitions).

Corollary 1.5. For all f : {0, 1}n × {0, 1}n → {0, 1} :

max
µ

log(1/discµ(f)) ≤ O(UPC(f)) ≤ O(max
µ

log(1/discµ(f)) + log n),

where µ denotes distributions on {0, 1}n × {0, 1}n.
This explains why the discrepancy bound is usually not a good lower bound for

bounded error communication complexity, since the weakly unbounded error com-
plexity is always asymptotically at most as large as e.g. the classical nondeterministic
complexity. For our examples the new lower bound methods are exponentially bet-
ter than the discrepancy bound. In the light of Corollary 1.5 it becomes clear that
lower bounds using discrepancy implicitly follow the approach of simulating quan-
tum bounded error protocols by classical unbounded error protocols and subsequent
application of a classical lower bound method.

We conclude also that the discrepancy bound subsumes other methods for proving
lower bounds on the weakly unbounded error communication complexity [16]. Fur-
thermore we investigate quantum protocols with weakly unbounded error and show
that quantum and classical weakly unbounded error communication complexity are
asymptotically equivalent.

The organization of the paper is as follows. In section 2 we describe the necessary
technical background. Section 3 shows how we can decompose quantum protocols into
weighted rectangle covers of the communication matrix. Sections 4 and 6 then describe
our main lower bound techniques, while sections 5 and 7 show how to apply these
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to specific functions and derive Corollaries 1.1, 1.2, and 1.4. Section 8 is concerned
with the power of classical and quantum weakly unbounded error protocols. Section
9 discusses recent developments and open problems.

2. Preliminaries. Note that we consider functions with range {0, 1} as well as
with range {−1, 1}. If a result is stated for functions with range {0, 1} then it also
holds for {−1, 1}. Some results are stated only for functions with range {−1, 1}. The
communication complexity does not depend on that choice, so this means that certain
parameters in the lower bounds are dependent on the range.

2.1. Quantum States and Transformations. Quantum mechanics is usually
formulated in terms of states and transformations of states. See [32] for general
information on this topic with an orientation on quantum computing.

In quantum mechanics pure states are unit vectors in a Hilbert space, usually
Ck. We use the Dirac notation for pure states. So a pure state is denoted |φ〉 or
∑

x∈{0,...,k−1} αx|x〉 with
∑

x∈{0,...,k−1} |αx|2 = 1 and with { |x〉 |x ∈ {0, . . . , k − 1}}
being an orthonormal basis of Ck.

Inner products in the Hilbert space are denoted 〈φ|ψ〉.
If k = 2l then the basis is also denoted { |x〉 |x ∈ {0, 1}l}. In this case the space

C2l

is the l-wise tensor product of the space C2. The latter space is called a qubit,
the former space consists of l qubits.

As usual measurements of observables and unitary transformations are considered
as basic operations on states, see [32] for definitions.

2.2. The Communication Model. Now we provide definitions of the com-
putational models considered in the paper. We begin with the model of classical
communication complexity.

Definition 2.1. Let f : X × Y → {0, 1} be a function. In as classical commu-
nication protocol player Alice and Bob receive x ∈ X and y ∈ Y and compute f(x, y).
The players exchange binary encoded messages.

In a deterministic protocol all computations of Alice and Bob are determinis-
tic. The communication complexity of a protocol is the worst case number of bits
exchanged for any input. The deterministic communication complexity DC(f) of f is
the complexity of an optimal protocol for f .

In a randomized protocol both players have access to private random bits. In the
bounded error model the output is required to be correct with probability 1− ǫ for some
constant 1/2 > ǫ ≥ 0. The bounded error randomized communication complexity of
a function BPCǫ(f) is then defined analogously to the deterministic communication
complexity, where worst case communication refers to both inputs and random bits.
We set BPC(f) = BPC1/3(f).

In a weakly unbounded error protocol the output has to be correct with probability
exceeding 1/2. If the worst case error of the protocol (over inputs and coin tosses) is
1/2− δ and the worst case communication is c, then the cost of the protocol is defined
as c− ⌊log δ⌋. The cost of an optimal weakly unbounded error protocol for a function
is called UPC(f).

Definition 2.2. The communication matrix of a function f : X × Y → Z is
a matrix with rows labeled by x ∈ X, columns labeled by y ∈ Y , and the entry in
row x and column y is f(x, y) ∈ Z. A rectangle in the communication matrix is a
product set of inputs labeled by A × B with A ⊆ X and B ⊆ Y . Such a rectangle is
monochromatic, iff all of its entries are equal.
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It is easy to see that a deterministic protocol partitions the communication matrix
into a set of monochromatic rectangles, each corresponding to the set of inputs sharing
the same communication string produced in the run of the protocol.

The above notion of weakly unbounded error protocols coincides with another
type of protocol, namely majority nondeterministic protocols, which accept an input,
whenever there are more nondeterministic computations leading to acceptance than
to rejection. For a proof see theorem 10 in [20]. So weakly unbounded error protocols
correspond to certain majority covers for the communication matrix as follows:

Fact 2.3. There is a weakly unbounded error protocol with cost O(c), iff there is
a set of 2O(c) rectangles each labeled either 1 or 0, such that for every input at least
one half of the adjacent rectangles have the label f(x, y).

Note that there is another type of protocols, truly unbounded error protocols,
in which the cost is not dependent on the error, defined by Paturi and Simon [34].
Recently a linear lower bound for the unbounded error communication complexity of
IPn has been obtained in [17]. It is not hard to see that the same bound holds for
quantum communication as well. An interesting observation is that the lower bound
method of [17] is actually equivalent to the discrepancy lower bound restricted to the
uniform distribution.

Now we turn to quantum communication protocols. For a more formal definition
of quantum protocols see [41].

Definition 2.4. In a quantum protocol both players have a private set of qubits.
Some of the qubits are initialized to the input before the start of the protocol, the other
qubits are in state |0〉. In a communication round one of the players performs some
unitary transformation on the qubits in his/her possession and then sends some of
these qubits to the other player (the latter step does not change the global state but
rather the possession of individual qubits). The choices of the unitary operations and
of the qubits to be sent are fixed in advance by the protocol.

At the end of the protocol the state of some qubit belonging to one player is mea-
sured and the result is taken as the output and communicated to the other player. The
communication complexity of the protocol is the number of qubits exchanged.

In a (bounded error) quantum protocol the correct answer must be given with
probability 1− ǫ for some 1/2 > ǫ ≥ 0. The (bounded error) quantum complexity of a
function, called BQCǫ(f), is the complexity of an optimal protocol with error ǫ for f .
BQC(f) = BQC1/3(f).

In a weakly unbounded error quantum protocol the output has to be correct with
probability exceeding 1/2. If the worst case error of the protocol (over all inputs)
is 1/2 − δ and the communication is c, then the cost of the protocol is defined as
c− ⌊log δ⌋. The cost of an optimal weakly unbounded error protocol for a function is
called UQC(f).

In a nondeterministic quantum protocol for a Boolean function f all inputs in
f−1(0) have to be rejected with certainty, while all other inputs have to be accepted
with positive probability. The corresponding complexity is denoted NQC(f).

We have to note that in the defined model no intermediate measurements are
allowed to control the choice of qubits to be sent or the time of the final measure-
ment. Thus for all inputs the same amount of communication and the same number
of message exchanges are used. As a generalization one could allow intermediate
measurements, whose results could be used to choose (several) qubits to be sent and
possibly when to stop the communication protocol. One would have to make sure
that the receiving player knows when a message ends. While the model in our def-
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inition is in the spirit of the “interacting quantum circuits” definition given by Yao
[41], the latter definition would more closely resemble “interacting quantum Turing
machines”. Obviously the latter model can be simulated by the former such that in
each communication round exactly one qubit is communicated. All measurements
can then be deferred to the end by standard techniques. This increases the overall
communication by a factor of 2 (and the number of message exchanges by a lot).

2.3. Fourier Analysis. We consider functions f : {0, 1}n → IR. Define

〈f, g〉 =
1

2n

∑

x∈{0,1}n

f(x) · g(x)

as inner product and use the norm ||f ||2 =
√

〈f, f〉. We identify {0, 1}n with ZZ
n
2 and

describe the Fourier transform. A basis for the space of functions from ZZ
n
2 → IR is

given by

χz(x) = (−1)IPn(x,z)

for all z ∈ ZZ
n
2 . Then the Fourier transform of f with respect to that basis is

∑

z

f̂zχz,

where the f̂z = 〈f, χz〉 are called the Fourier coefficients of f . If the functions are
viewed as vectors, this is closely related to the Hadamard transform widely used in
quantum computing.

The following facts are well-known.
Fact 2.5 (Parseval). For all f : ||f ||22 =

∑

z f̂
2
z .

Fact 2.6 (Cauchy-Schwartz).

∑

z

f̂2
z ·
∑

z

ĝ2
z ≥

(

∑

z

|f̂z · ĝz|
)2

.

When we consider (communication) functions f : ZZ
n
2 ×ZZ

n
2 → IR, we use the basis

functions

χz,z′(x, x′) = (−1)IPn(x,z)+IPn(x′,z′)

for all z, z′ ∈ ZZ
n
2 ×ZZ

n
2 in Fourier transforms. The Fourier transform of f with respect

to that basis is

∑

z,z′

f̂z,z′χz,z′ ,

where the f̂z,z′ = 〈f, χz,z′〉 are the Fourier coefficients of f .
We will decompose communication protocols into sets of weighted rectangles.

For each rectangle Ri = Ai × Bi ⊆ {0, 1}n × {0, 1}n let Ri, Ai, Bi also denote the
characteristic functions associated to the rectangle. Then let αi = |Ai|/2n be the
uniform probability of x being in the rectangle, and βi = |Bi|/2n be the uniform
probability of y being in the rectangle. Let α̂z,i denote the Fourier coefficients of Ai
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and β̂z,i the Fourier coefficients of Bi. It is easy to see that α̂z,i ·β̂z′,i is the z, z′-Fourier
coefficient of the rectangle function Ri.

For technical reasons we will sometimes work with functions f , whose range is
{−1, 1}. Note that we can set f = 2g − 1 for a function g with range {0, 1}. Since
the Fourier transform is linear, the effect on the Fourier coefficients is that they get
multiplied by 2 except for the coefficient of the constant basis function, which is also
decreased by 1.

2.4. Discrepancy, Sensitivity, and Entropy. We now define the discrepancy
bound.

Definition 2.7. Let µ be any distribution on {0, 1}n × {0, 1}n and f be any
function f : {0, 1}n × {0, 1}n → {0, 1}. Then let

discµ(f) = max
R

|µ(R ∩ f−1(0)) − µ(R ∩ f−1(1))|,

where R runs over all rectangles in the communication matrix of f .
Then denote disc(f) = minµ discµ(f).
The application to communication complexity is as follows (see [28] for a less

general statement, for completeness we also provide a proof at the end of section 3):
Fact 2.8. For all f :

BQC1/2−ǫ(f) = Ω(log(ǫ/disc(f))).

A quantum protocol which computes a function f correctly with probability 1/2 +
ǫ over a distribution µ on the inputs (and over its measurements) needs at least
Ω(log(ǫ/discµ(f))) communication.

We will prove a lower bound on quantum communication complexity in terms of
average sensitivity. The average sensitivity of a function measures how many of the n
possible bit flips in a random input change the function value. We define this formally
for functions with range {−1, 1}.

Definition 2.9. Let f : {0, 1}n → {−1, 1} be a function. For a ∈ {0, 1}n let
sa(f) =

∑n
i=1

1
2 |f(a) − f(a⊕ ei)| for the vector ei containing a one at position i and

zeroes elsewhere. sa(f) is the sensitivity of f at a. Then the average sensitivity of f
is defined s̄(f) =

∑

a∈{0,1}n

1
2n sa(f).

The connection to Fourier analysis is made by the following fact first observed in
[23].

Fact 2.10. For all f : {0, 1}n → {−1, 1} :

s̄(f) =
∑

z∈{0,1}n

|z| · f̂2
z .

So the average sensitivity can be expressed in terms of the expected “height”/
”sequency” of Fourier coefficients under the distribution induced by the squared co-
efficients.

One more notion we will use in lower bounds is entropy.
Definition 2.11. The entropy of a vector (f1, . . . , fm) with fi ≥ 0 for all i and

∑

fi ≤ 1 is H(f) = −∑m
i=1 fi log fi.

We follow the convention 0 log 0 = 0. We will consider the entropy of the vector of
squared Fourier coefficients H(f̂2) = −

∑

z f̂
2
z log(f̂2

z ). This quantity has the following
useful property.
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Lemma 2.12. For any f : {0, 1}n → IR with ||f ||2 ≤ 1 :

H(f̂2) ≤ 2 log



1 +
∑

z∈{0,1}n

|f̂z|



 .

Proof.

H(f̂2) =
∑

z

f̂2
z log

1

|f̂z|2

= 2

(

∑

z

f̂2
z log

1

|f̂z|
+ (1 −

∑

z

f̂2
z ) · log 1

)

≤ 2 log

(

∑

z

f̂2
z

1

|f̂z|
+ (1 −

∑

z

f̂2
z ) · 1

)

by Jensen’s inequality

≤ 2 log

(

1 +
∑

z

|f̂z|
)

.

3. Decomposing Quantum Protocols. In this section we show how to decom-
pose a quantum protocol into a set of weighted rectangles, whose sum approximates
the communication matrix.

Lemma 3.1. For all Boolean functions f : {0, 1}n × {0, 1}n → {0, 1}, and for all
1/2 > ǫ > 0:

If there is a quantum protocol for f with communication c and error 1/3,
then there is a real α ∈ [0, 1], and a set of 2O(c log(1/ǫ))/ǫ4 rectangles Ri with

weights wi ∈ {−α, α}, so that

∑

i

wiRi[x, y] ∈
{

[1 − ǫ, 1] for f(x, y) = 1
[0, ǫ] for f(x, y) = 0.

Proof. First we perform the usual success amplification to boost the success
probability of the quantum protocol to 1 − ǫ/4, increasing the communication to
c′ = O(c log(1/ǫ)) at most. Using standard techniques [7] we can assume that all
amplitudes used in the protocol are real. Now we employ the following fact proved in
[28] and [41].

Fact 3.2. The final state of a quantum protocol exchanging c′ qubits on an input
(x, y) can be written

∑

m∈{0,1}c′

αm(x)βm(y)|Am(x)〉|mc′〉|Bm(y)〉,

where |Am(x)〉, |Bm(y)〉 are pure states and αm(x), βm(y) are real numbers from the
interval [−1, 1].

Now let the final state of the protocol on (x, y) be

∑

m∈{0,1}c′

αm(x)βm(y)|Am(x)|mc′〉|Bm(y)〉,
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and let φ(x, y) =

∑

m∈{0,1}c′−1

αm1(x)βm1(y)|Am1(x)〉|1〉|Bm1(y)〉

be the part of the state which yields output 1. The acceptance probability of the
protocol on (x, y) is now the inner product 〈φ(x, y)|φ(x, y)〉. Using the convention

amp(x) = αm1(x)αp1(x)〈Am1(x)|Ap1(x)〉,

bmp(y) = βm1(y)βp1(y)〈Bm1(y)|Bp1(y)〉,

this can be written as
∑

m,p amp(x)bmp(y). Viewing amp and bmp as 2n-dimensional

vectors, and summing their outer products over all m, p yields a sum of 22c′ rank
1 matrices containing reals between -1 and 1. Rewrite this sum as

∑

i αiβ
T
i with

1 ≤ i ≤ 22c′ to save notation. The resulting matrix is an approximation of the
communication matrix within componentwise error ǫ/4.

In the next step define for all i a set Pα,i of the indices of positive entries in
αi, and the set Nα,i of the indices of negative entries of αi. Define Pβ,i and Nβ,i

analogously. We want to have that all rank 1 matrices either have only positive or
only negative entries. For this we split the matrices into 4 matrices each, depending
on the positivity/negativity of αi and βi. Let

α′
i(x) =

{

0 if x ∈ Nα,i

αi(x) if x ∈ Pα,i
,

and analogously for β′
i, then set the positive entries in αi and βi to 0. Consider the

sum
∑

i(αiβ
T
i ) +

∑

i(α
′
iβ

T
i ) +

∑

i(αiβ
′T
i ) +

∑

i(α
′
iβ

′T
i ). This sum equals the previous

sum, but here all matrices are either nonnegative or nonpositive. Again rename the
indices so that the sum is written

∑

i αiβ
T
i (to save notation).

At this point we have a set of C = 22c′+2 rank one matrices which are either
nonnegative or nonpositive with the above properties. We want to round entries and
split matrices into uniformly weighted matrices.

Consider the intervals [0, ǫ/(16C) ], and [ǫ/(16C) · k, ǫ/(16C) · (k + 1) ], for all k
up to the least k for which the interval includes 1. Obviously there are O(C/ǫ) such
intervals. Round every positive αi(x) and βi(x) to the upper bound of the first interval
it is included in, and change the negative entries analogously by rounding to the upper
bounds of the corresponding negative intervals. The overall error introduced on an
input (x, y) in the approximating sum

∑

i αi(x)βi(y) is at most

∑

i

αi(x) · ǫ/(16C)

+
∑

i

βi(y) · ǫ/(16C) + C · ǫ2/(16C)2

≤ ǫ/4.

The sum of the matrices is now between 1− ǫ/2 and 1 + ǫ/4 for inputs in f−1(1) and
between −ǫ/4 and ǫ/2 for inputs in f−1(0). Add a rectangle with weight ǫ/4 covering
all inputs. Dividing all weights by 1 + ǫ/2 renormalizes again without increasing the
error beyond ǫ.
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Now we are left with C rank 1 matrices αiβ
T
i containing entries from a O(C2/ǫ2)

size set only. Splitting the rank 1 matrices into rectangles containing only the entries
with one of the values yields O(C3/ǫ2) weighted rectangles, whose (weighted) sum
approximates the communication matrix within error ǫ.

In a last step we replace any rectangle with weight ǫ2/(256C2(1 + ǫ/2)) · k · l by
kl rectangles with weights ±α for α = ǫ2/(256C2(1 + ǫ/2)). The rectangle weighted
ǫ/4 can be replaced by a set of rectangles with weight α each, introducing negligible
error. So the overall number of rectangle is at most O(C5/ǫ4) = O(210c′/ǫ4).

At first glance the covers obtained in this section seem to be very similar to
majority covers: we have a set of rectangles with either negative or positive weights
of absolute value α, and if the weighted sum of rectangles adjacent to some input
exceeds a threshold, then it is a 1-input. But we have one more property, namely
that summing the weights of the adjacent rectangles approximates the function value.
Actually the lower bounds in the next sections and the characterization of majority
covers (and weakly unbounded error protocols and the discrepancy bound) in section
8 show that there is an exponential difference between the sizes of the two types of
covers.

Now we state another form of the lemma, this time if the error is close to 1/2,
the proof is essentially the same as for Lemma 3.1, omitting the success amplification
at the beginning.

Lemma 3.3. For all Boolean functions f : {0, 1}n × {0, 1}n → {0, 1}, and for all
1/2 > ǫ > 0:

If there is a quantum protocol for f with communication c and error 1/2 − ǫ,

then there is a real α ∈ [0, 1], and a set of 2O(c)/ǫ4 rectangles Ri with weights
wi ∈ {−α, α}, so that

∑

i

wiRi[x, y] ∈
{

[1/2 + ǫ/2, 1] for f(x, y) = 1
[0, 1/2 − ǫ/2] for f(x, y) = 0.

Note that all results of this section easily generalize to functions with range
{−1,+1}. Furthermore all the results generalize to partial functions, i.e., the func-
tions may be undefined on some inputs. For those inputs the weighted covers produce
an arbitrary weight between 0 and 1.

As an application of the decomposition results we now prove Fact 2.8. A proof
of this result seems to be available only in the thesis of Kremer [28] and is stated in
less generality there, so we include a proof here.

Proof of Fact 2.8. Obviously it suffices to prove the second statement. Let µ be
any distribution on the inputs. Assume there is a protocol with communication c so
that the average correctness probability over µ and the measurements of the protocol
is at least 1/2 + ǫ.

Let P (x, y) denote the probability that the protocol accepts x, y and K(x, y)
denote the probability that the protocol is correct on x, y. W.l.o.g. we assume that
µ(f−1(1)) ≥ µ(f−1(0)). Then we have

∑

x,y∈f−1(1)

µ(x, y)P (x, y)

−
∑

x,y∈f−1(0)

µ(x, y)P (x, y)
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=
∑

x,y∈f−1(1)

µ(x, y)K(x, y)

+
∑

x,y∈f−1(0)

µ(x, y)K(x, y) − µ(f−1(0))

≥ 1/2 + ǫ− 1/2 = ǫ.

Following the construction of Lemma 3.3 we get a set of C = 2O(c)/ǫ4 rectangles
Ri with weights wi so that the sum of these approximates the acceptance probability
of the protocol with componentwise additive error ǫ/2. Then

∑

x,y∈f−1(1)

µ(x, y)
∑

1≤i≤C

wiRi(x, y)

−
∑

x,y∈f−1(0)

µ(x, y)
∑

1≤i≤C

wiRi(x, y) ≥ ǫ− ǫ/2.

Exchanging sums gives us

∑

1≤i≤C

wi





∑

x,y∈f−1(1)

µ(x, y)Ri(x, y)−
∑

x,y∈f−1(0)

µ(x, y)Ri(x, y)



 ≥ ǫ/2

and

∑

1≤i≤C

wi(µ(f−1(1) ∩Ri) − µ(f−1(0) ∩Ri)) ≥ ǫ/2.

Thus there is a rectangle Ri with µ(f−1(1)∩Ri)−µ(f−1(0)∩Ri) ≥ (ǫ/2)/C, since
|wi| ≤ 1. But for all rectangles we have µ(f−1(1) ∩Ri) − µ(f−1(0) ∩Ri) ≤ discµ(f),
hence discµ(f) ≥ (ǫ/2)/C and finally

2O(c)

ǫ4
= C ≥ (ǫ/2)/discµ(f) ⇒ c ≥ Ω

(

log
ǫ

discµ(f)

)

.

2

4. A Fourier Bound. In this section we describe a lower bound method first
developed by Raz [35] for classical bounded error communication complexity. We
prove that the same method is applicable in the quantum case, using the decompo-
sition results from the previous section. The lower bound method is based on the
Fourier transform of the function.

As in section 2.3 we consider the Fourier transform of a communication function.
The basis functions are labeled by pairs of strings (z, z′). Denote by V the set of all
pairs (z, z). Let E ⊆ V denote some subset of indices of Fourier coefficients.

The basic idea of the lower bound is that the communication must be large, when
the sum of the absolute values of a small set of Fourier coefficients is large.

Theorem 4.1. Let f be a total Boolean function f : {0, 1}n × {0, 1}n → {0, 1}.
Let E ⊆ V . Denote κ0 = |E| (the number of coefficients considered) and κ1 =

∑

(z,z)∈E |f̂z,z| (the absolute value sum of coefficients considered). Then:

If κ1 ≥ Ω(
√
κ0), then BQC(f) = Ω(log(κ1)).

If κ1 ≤ O(
√
κ0), then BQC(f) = Ω(log(κ1)/(log(

√
κ0) − log(κ1) + 1)).
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Proof. We are given any quantum protocol for f with error 1/3 and some worst
case communication c. We have to put the stated lower bound on c. Following
Lemma 3.1 we can find a set of 2O(cd) weighted rectangles, so that the sum of these
approximates the communication matrix up to error 1/2d for any d ≥ 1, where the
weights are either α, or −α for some real α between 0 and 1. We will fix d later. Let
{(Ri, wi)|1 ≤ i ≤ 2O(cd)} denote that set. Furthermore let g(x, y) denote the function
that maps (x, y) to

∑

i wiRi(x, y).
First we give a lower bound on the sum of absolute values of the Fourier coefficients

in E for g, in terms of the respective sum for f , using the fact that g approximates
f . Obviously ||f − g||2 ≤ 1/2d. The identity of Parseval then gives us

∑

(z,z)∈E

(f̂z,z − ĝz,z)
2 ≤ ||f − g||22 ≤ 2−2d.

We make use of the following simple consequence of Fact 2.6.
Fact 4.2. Let |||v|||2 =

√
∑m

i=1 v
2
i , and |||v|||1 =

∑m
i=1 |vi|. Then |||v − w|||2 ≥

|||v − w|||1/
√
m ≥ (|||v|||1 − |||w|||1)/

√
m.

Hence

∑

E

|ĝz,z| ≥
∑

E

|f̂z,z| −
√

|E| ·
∑

E

(f̂z,z − ĝz,z)2

≥ κ1 −
√
κ0 · 2−d.

Thus the sum of absolute values of the chosen Fourier coefficients of g must be
large, if there are not too many such coefficients, or if the error is small enough
to suppress their number in the above expression. Call P = (κ1 − √

κ0 · 2−d), so
∑

E |ĝz,z| ≥ P .
Now due to the decomposition of the quantum protocol used to obtain g, the

function is the weighted sum of C = 2O(cd) rectangles. Since the Fourier transform is
a linear transformation, the Fourier coefficients of g are weighted sums of the Fourier
coefficients of the rectangles. Furthermore the Fourier coefficients of a rectangle are
the products of the Fourier coefficients of the characteristic functions of the sets
constituting the rectangle, as argued in section 2.3. So ĝz,z =

∑

i wi · α̂z,i · β̂z,i and
∑

E

|ĝz,z| ≤
∑

E

∑

i

|wi · α̂z,i · β̂z,i|.(4.1)

For all rectangles Ri we have
∑

E α̂
2
z,i ≤ ||Ai||22 ≤ 1 by the identity of Parseval.

Using the Cauchy-Schwartz inequality (Fact 2.6) we get
∑

E |α̂z,iβ̂z,i| ≤ 1. But ac-
cording to (4.1) the weighted sum of these values, with weights between -1 and 1,
adds up to at least P , and so at least C ≥ P rectangles are there, thus cd = Ω(logP ).

If now κ1 ≥ Ω(
√
κ0), then let d = O(1), and we get the lower bound c =

Ω(log(κ1)). Otherwise set d = O(log
√
κ0 − log κ1 + 1) to get P = κ1/2 as well

as c = Ω(log(P )/d) = Ω(log(κ1)/(log(
√
κ0) − log(κ1) + 1)).

Let us note one lemma that is implicit in the above proof, and which will be used
later.

Lemma 4.3. Let g : {0, 1}n ×{0, 1}n → [−1, 1] be any function such that there is

a set of Q rectangles Ri with weights wi ∈ [−1, 1] so that g(x, y) =
∑Q

i=1 wiRi(x, y)
for all x, y. Then

∑

z∈{0,1}n

|ĝz,z| ≤ Q.
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5. Applications. In this section we give applications of the lower bound method.

5.1. Quantum Nondeterminism versus Bounded Error. We first use the
lower bound method to prove that nondeterministic quantum protocols may be ex-
ponentially more efficient than bounded error quantum protocols. Raz has shown the
following [35]:

Fact 5.1. For the function HAM
n/2
n (with n divisible by 4) consider the set of

Fourier coefficients with labels from a set E containing those strings z, z with z having
n/2 ones. Then

κ0 =

(

n

n/2

)

, κ1 =

(

n

n/2

)(

n/2

n/4

)

1

2n
.

Thus log(
√
κ0) − log(κ1) = O(log n). Also κ1 = Θ(2n/2/n) and thus log κ1 =

Θ(n).
Applying the lower bound method we get

Theorem 5.2. BQC(HAM
n/2
n ) = Ω(n/ log n).

Now we prove that the nondeterministic quantum complexity ofHAM
n/2
n is small.

We use the following technique by de Wolf [40, 22].
Fact 5.3. Let the nondeterministic rank of a Boolean function f be the mini-

mum rank of a matrix that contains 0 at positions corresponding to inputs (x, y) with
f(x, y) = 0 and nonzero reals elsewhere. Then NQC(f) = log nrank(f) + 1.

Theorem 5.4. NQC(HAM
n/2
n ) = O(log n).

Proof. It suffices to prove that the nondeterministic rank is polynomial. Define
rectangles Mi, which include inputs with xi = 1 and yi = 0, and Ni, which include
inputs with xi = 0 and yi = 1. Let E denote the all one matrix. Then let M =
∑

i(Mi + Ni) − n/2 · E. This is a matrix which is 0 exactly at those inputs with
∑

i(xi ⊕ yi) = n/2. Furthermore M is composed of 2n + 1 weighted rectangles and

thus the nondeterministic rank of HAM
n/2
n is O(n).

5.2. The Complexity of the Hamming Distance Problem. Now we deter-
mine the complexity ofHAM t

n, and show that quantum bounded error communication
does not allow a significant speedup.

Theorem 5.5. Let t : IN → IN be any monotone increasing function with t(n) ≤
n/2. Then

BQC(HAM t(n)
n ) ≥ Ω

(

t(n)

log t(n)
+ log n

)

.

Proof. We already know that the complexity of HAM
n/2
n is Ω(n/ log n). Now

consider functions HAM t
n for smaller t. The logarithmic lower bound is obvious from

the at most exponential speedup obtainable by quantum protocols [28] compared to
deterministic protocols.

Fixing n− 2t pairs of inputs variables to the same values leaves us with 2t pairs
of free variables and the function accepts if HAM t

2t accepts on these inputs. Thus
the lower bound follows.

Theorem 5.6.

BPC(HAM t
n) = O(t log n).
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Proof. The protocol determines (and removes) positions in which x, y are different,
until no more such positions are present, or until t + 1 such positions are found, in
both cases the function value can be decided.

Nisan [33] has given a protocol in which Alice and Bob, given n-bit strings x, y,
compute the leftmost bit in which x, y differ. The protocol needs communication
O(log n− log ǫ) to solve this problem with error ǫ. Hence we can find such a position
with error 1/(3t) and communication O(log n), since t ≤ n. So Alice and Bob can
determine with error 1/3, whether there are exactly t differences between x and y,
using communication O(t log n) as claimed.

There is another way to prove this upper bound, based on the standard finger-
printing protocol for EQn (see [29]): Alice sends a fingerprint for input x to Bob such
that this fingerprint allows to check equality between x and strings z with success
probability 1 − 1/n2t. Such fingerprints can have length O(t log n). Bob can then
go through all z in Hamming distance t from y and check equality to x. With high
probability all the tests are performed correctly and Bob knows the result. Note that
this protocol needs only one message exchange.

6. More Fourier Bounds. In this section we develop more methods for proving
lower bounds on quantum communication complexity in terms of properties of their
Fourier coefficients. Combining them yields a bound in terms of average sensitivity.

6.1. A Bound Employing One Fourier Coefficient. Consider functions of
the type f(x, y) = g(x∧ y). The Fourier coefficients of g measure how well the parity
function on a certain set of variables is approximated by g. But if g is correlated with
a parity (hopefully on a large set of variables), then f should be correlated with an
inner product function. In this case the hardness result stated in Fact 2.8 is indirectly
applicable (even though f might have low discrepancy).

Theorem 6.1. For all total functions f : {0, 1}n×{0, 1}n → {0, 1} with f(x, y) =
g(x ∧ y) and all z ∈ {0, 1}n :

BQC(f) = Ω

( |z|
1 − log |ĝz|

)

.

Proof. We prove the bound for g with range {−1, 1}. Obviously the bound itself
changes only by a constant factor with this change and the communication complexity
is unchanged.

Let z be the index of any Fourier coefficient of g. Let |z| = m. Basically ĝz

measures how well g approximates χz, the parity function on them variables which are
1 in z. Consider the following distribution µm on {0, 1}m × {0, 1}m: Each variable is
independently set to one with probability

√

1/2 and to zero with probability 1−
√

1/2.
Then every xi ∧ yi is one resp. zero with probability 1/2. So under this distribution
on the inputs (x, y) to f we get the uniform distribution on the inputs z = x∧ y to g.

We will get an approximation of IPm under µm with error 1/2− |ĝz|/4 by taking
the outputs of a protocol for f under a suitable distribution. We then use a hardness
result for IPm given by the following lemma.

Lemma 6.2. Let µm be the distribution on {0, 1}m ×{0, 1}m, that is the 2m-wise
product of the distribution on {0, 1}, in which 1 is chosen with probability

√

1/2. Then

discµm
(IPm) ≤ O(2−m/4).
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Clearly with Fact 2.8 we get that computing IPm with error 1/2 − ǫ under the
distribution µm needs quantum communication Ω(m/4 + log ǫ).

Let us prove the lemma. Lindsey’s Lemma (see e.g. [4]) states the following.
Fact 6.3. Let R be any rectangle with a× b entries in the communication matrix

of IPm. Then let

∣

∣|R ∩ IP−1
m (1)| − |R ∩ IP−1

m (0)|
∣

∣ ≤
√
ab2m.

The above fact allows to compute the discrepancy of IPn under the uniform
distribution, and will also be helpful for µm.

µm is uniform on the subset of all inputs x, y containing k ones. Consider any
rectangle R. There are at most

(

2m
k

)

inputs with exactly k ones in that rectangle.
Furthermore if we intersect the rectangle of all inputs x, y containing i ones in x and
j ones in y with R we get a rectangle containing at most

(

m
i

)

·
(

m
j

)

≤
(

2m
i+j

)

inputs. In

this way R is partitioned into m2 rectangles, on which µm is uniform and Lindsey’s
lemma can be applied. Note that we partition the set of inputs with overall k ones
into up to m rectangles.

Let α =
√

1/2. The probability of any input with k ones is (1−α)2m−k ·αk. We
get the following upper bound on discrepancy under µm:

m
∑

i,j=0

αi+j · (1 − α)2m−i−j ·
√

(

m

i

)(

m

j

)

2m

≤ m2m/2 ·
2m
∑

k=0

αk · (1 − α)2m−k ·
√

(

2m

k

)

≤ m2m/2 ·
√

2m+ 1 ·

√

√

√

√

2m
∑

k=0

α2k · (1 − α)4m−2k ·
(

2m

k

)

≤ m
√

2m+ 12m/2(α2 + (1 − α)2)m

≤ m
√

2m+ 12m/2(2 −
√

2)m

≤ O(2−m/4).

This concludes the proof of Lemma 6.2.
To describe the way we use this hardness result we first assume that the quantum

protocol for f is errorless. The Fourier coefficient for z measures the correlation
between g and the parity function χz on the variables that are ones in z. We first
show that χ1m can be computed with error 1/2 − |ĝz|/2 from g (or its complement).
To see this consider ĝz = 〈g, χz〉 =

∑

a
1
2n g(a) · χz(a). W.l.o.g. assume that the first

m variables of z are its ones. So we can rewrite to

ĝz =
∑

b∈{0,1}n−m

1

2n−m

∑

a∈{0,1}m

1

2m
g(ab) · χz(ab).

Note that χz depends only on the first m variables. In other words, if we fix a random
b, the output of g has an expected advantage of |ĝz| over a random choice in computing
parity on the cube spanned by the first m variables. Consequently there must be some



Lower Bounds for Quantum Communication Complexity 17

b realizing that advantage. We fix that b, and use g(ab) (or −g(ab)) to approximate
χ1m . The error of this approximation is 1/2 − |ĝz|/2.

Next we show that IPm resp. χ1m(x ∧ y) = χz((x ∧ y) ◦ b) is correlated with
g((x ∧ y) ◦ b) under some distribution.

Let µ′
n be a distribution resulting from µn, if all xi and yi for i = m + 1, . . . , n

are fixed so that xi ∧ yi = bi−m and all other variables are chosen as for µn. Then

|
∑

(x,y)∈{0,1}2·n

µ′
n(x, y) · g(x ∧ y) · χz(x ∧ y)|

= |
∑

a∈{0,1}m

g(ab) · χz(ab) ·
∑

x,y:x∧y=ab

µ′
n(x, y)|

= |
∑

a∈{0,1}m

g(ab) · χz(ab) ·
1

2m
| ≥ |ĝz|.

Hence computing f on µ′
n with no error is at least as hard as computing IPm on

distribution µm with error 1/2−|ĝz|/2, which needs at least Ω(|z|/4+ log |ĝz|) qubits
of communication due to the discrepancy bound.

We assumed so far that f is computed without error. Now assume the error of
a protocol for f is 1/3. Then reduce the error probability to |ĝz|/4 by repeating the
protocol d = O(1−log |ĝz|) times and taking the majority output. Computing f on µ′

n

with error |ĝz|/4 is at least as hard as computing IPm on distribution µm with error
1/2 − |ĝz|/2 + |ĝz|/4, which needs at least Ω(|z|/4 + log |ĝz|) qubits communication.
The error introduced by the protocol is smaller than the advantage of the function f
in computing IPm.

So a lower bound of Ω(|z|/4 + log |ĝz|) holds for the task of computing f with
error |ĝz|/4. This implies a lower bound of

Ω(|z|/4 + log |ĝz|)
d

= Ω

( |z|
1 − log |ĝz|

)

.

for the task of computing f with error 1/3.
Note that the discrepancy of f in the above theorem may be much higher than

the discrepancy of IPm (leading to weak lower bounds for f), but that f approximates
IPm well enough to transfer the lower bound known for IPm (which happens to be
provable via low discrepancy).

6.2. A Sensitivity Bound. A weaker, averaged form of the bound in the above
subsection is the following.

Lemma 6.4. For all functions f : {0, 1}n × {0, 1}n → {−1, 1} with f(x, y) =
g(x ∧ y) :

BQC(f) = Ω

(

s̄(g)

H(ĝ2) + 1

)

.

Proof. First note that s̄(g) =
∑

z ĝ
2
z |z| by Fact 2.10. So we can read the bound

BQC(f) = Ω

( ∑

z ĝ
2
z |z|

∑

z ĝ
2
z(1 − 2 log |ĝz|)

)

.

The ĝ2
z define a probability distribution on z ∈ {0, 1}n. If we choose a z randomly

then the expected Hamming weight of z is s̄(g). Also the expectation of 1− 2 log |ĝz|
is 1 +H(ĝ2). We use the following lemma.
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Lemma 6.5. Let a1, . . . , am be nonnegative and b1, . . . , bm be positive numbers
and let p1, . . . , pm be a probability distribution. Then there is an i with:

ai

bi
≥
∑

j pjaj
∑

j pjbj
.

To see the lemma let a =
∑

j pjaj and b =
∑

j pjbj and assume that for all i
we have aib < bia. Then also for all i with pi > 0 we have piaib < pibia and hence
b
∑

i piai < a
∑

i pibi, a contradiction.
So there must be one z, such that |z|/(1− log ĝ2

z) ≥ s̄(g)/(1+H(ĝ2)). Using that
z in the bound of Theorem 6.1 yields the lower bound.

The above bound decreases with the entropy of the squared Fourier coefficients.
This seems unnecessary, since the method of Theorem 4.1 suggests that functions
with highly disordered Fourier coefficients should be hard. This leads us to the next
bound.

Lemma 6.6. For all functions f : {0, 1}n × {0, 1}n → {−1, 1} :

BQC(f) = Ω

(

HD(f̂2)

log n

)

,

where HD(f̂2) = −∑z f̂
2
z,z log f̂2

z,z.
Proof. Consider any quantum protocol for f with communication c. As described

in Lemma 3.1, we can find a set of 2O(c log n) weighted rectangles so that their sum
yields a function h(x, y) that approximates f componentwise within error 1/n2.

Consequently, due to Lemma 4.3, the sum of certain Fourier coefficients of h is
bounded:

log
∑

z∈{0,1}n

|ĥz,z| ≤ O(c log n).

Also −∑z∈{0,1}n ĥ2
z,z log ĥ2

z,z ≤ 2 log(1+
∑

z∈{0,1}n |ĥz,z|) ≤ O(c log n) due to Lemma 2.12.

But on the other hand ||f − h||2 ≤ 1/n2, which we will use to relate HD(f̂2) to

HD(ĥ2). We employ the following lemma.
Lemma 6.7. Let f, h : {0, 1}n × {0, 1}n → IR with ||f ||2, ||h||2 ≤ 1. Then

∑

z∈{0,1}n

|f̂2
z,z − ĥ2

z,z| ≤ 3||f − h||2.

Let us prove the lemma. Define

Minz =

{

f̂z,z if |f̂z,z| ≤ |ĥz,z|
ĥz,z if |ĥz,z| < |f̂z,z|

and

Maxz =

{

f̂z,z if |f̂z,z| > |ĥz,z|
ĥz,z if |ĥz,z| ≥ |f̂z,z|.

Then
∑

z∈{0,1}n |f̂2
z,z − ĥ2

z,z| =
∑

z Max2
z −Min2

z and

||f − h||22 ≥
∑

z

(f̂z,z − ĥz,z)
2 =

∑

z

(Minz −Maxz)
2.
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Due to the triangle inequality we have

√

∑

z

Min2
z + ||f − h||2 ≥

√

∑

z

Max2
z

and
√

∑

z

Min2
z ≥

√

∑

z

Max2
z − ||f − h||2,

which implies

∑

z

Min2
z ≥

∑

z

Max2
z − 2

√

∑

z

Max2
z · ||f − h||2,

and

∑

z

Max2
z −Min2

z ≤ 2

√

∑

z

Max2
z · ||f − h||2

≤ 2

√

∑

z

f̂2
z,z + ĥ2

z,z · ||f − h||2

≤ 2
√

2||f − h||2.

Lemma 6.7 is proved.
So the distribution given by the squared z, z-Fourier coefficients of f is close to

the vector of the squared z, z-Fourier coefficients of h. Then also the entropies are
quite close, by the following fact (see Theorem 16.3.2 in [15]).

Fact 6.8. Let p, q be distributions on {0, 1}n with d =
∑

z |pz − qz| ≤ 1/2. Then
|H(p) −H(q)| ≤ d · n− d log d.

Actually the fact also holds if p, q are arbitrary vectors of 2n real numbers that
are each between 0 and 1. So we get

HD(ĥ2) ≥ HD(f̂2) −O(1/n).

Remembering that HD(ĥ2) = O(c log n) we get

HD(f̂2) ≤ O(c log n+ 1/n).

This concludes the proof.
If f(x, y) = g(x ⊕ y), then HD(f̂2) = H(f̂2) = H(ĝ2). Now we would like to

completely remove the entropies from our lower bounds, since the entropy of the
squared Fourier coefficients is in general hard to estimate. To this end we combine
the bounds of Lemmas 6.4 and 6.6. The first holds for functions g(x ∧ y), the second
for functions g(x⊕ y).

Definition 6.9. A communication problem f : {0, 1}n × {0, 1}n → {−1, 1} can
be reduced to another problem h : {0, 1}m × {0, 1}m → {−1, 1}, if there are functions
a, b so that f(x, y) = h(a(x), b(y)) for all x, y.

In this case the communication complexity of h is at least as large as the commu-
nication complexity of f . Note that if m is much larger than n, a lower bound which
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is a function of n translates into a lower bound which is a function of m, and is thus
“smaller”. For more general types of reductions in communication complexity see [4].

If we can reduce g(x ∧ y) and g(x⊕ y) to some f , then combining the bounds of
Lemmas 6.4 and 6.6 gives a lower bound of Ω(s̄(g)/(1+H(ĝ2))+H(ĝ2)/ log n), which
yields Corollary 1.3.

6.3. A Bound Involving Singular Values. We return to the technique of
Lemma 6.6. For many functions, like IPm, the entropy of the squared diagonal
Fourier coefficients is small, because these coefficients are all very small. We consider
the entropy of a vector of values that sum to something much smaller than 1 in cases.
Consequently it may be useful to consider other unitary transformations instead of
the Fourier transform.

It is well known that any square matrix M can be brought into diagonal form by
multiplying with unitary matrices, i.e., there are unitary U, V so that M = UDV ∗

for some positive diagonal D. The entries of D are the singular values of M , they are
unique and equal to the eigenvalues of

√
MM∗, see [8].

Consider a communication matrix for a function f : {0, 1}n × {0, 1}n → {−1, 1}.
Then let Mf denote the communication matrix divided by 2n. Let σ1(f), . . . , σ2n(f)
denote the singular values of Mf in some decreasing order. In case Mf is symmetric
these are just the absolute values of its eigenvalues. Let σ2(f) denote the vector of
squared singular values of Mf . Note that the sum of the squared singular values is 1.
The following theorem is a modification of Lemma 6.6 and Theorem 4.1.

Theorem 6.10. Let f : {0, 1}n × {0, 1}n → {−1, 1} be a total Boolean function.
Then BQC(f) = Ω(H(σ2(f))/ log n).
Let κk = σ1(f) + · · · + σk(f).
If κk ≥ Ω(

√
k), then BQC(f) = Ω(log(κk)).

If κk ≤ O(
√
k), then BQC(f) = Ω(log(κk)/(log(

√
k) − log(κk) + 1)).

Proof. We first consider the entropy bound and proceed similarly as in the proof
of Lemma 6.6. Let f be the considered function and let h be the function computed
by a protocol decomposition with error 1/n2 consisting of P rectangles with logP =
O(c log n) for the communication complexity c of some protocol computing f with
error 1/3.

Mf denotes the communication matrix of f divided by 2n, let Mh be the corre-
sponding matrix for h. Using the Frobenius norm on the matrices we have ||Mf −
Mh||F = ||f −h||2 ≤ 1/n2. Then also the singular values of the matrices are close due
to the Hoffmann-Wielandt Theorem for singular values, see Corollary 7.3.8 in [21].

Fact 6.11. Let A,B be two square matrices with singular values σ1 ≥ · · · ≥ σm

and µ1 ≥ · · · ≥ µm. Then
√

∑

i

(σi − µi)2 ≤ ||A−B||F .

As in Lemma 6.6 we can use Lemma 6.7 to show that the L1-distance between
the vector of squared singular values of Mf and the corresponding vector for Mh is
bounded and Fact 6.8 to show that the entropies of the squared singular values of Mf

and Mh are at most o(1) apart.
It remains to show that H(σ2(h)) is upper bounded by logP . Due to Lemma 2.12

H(σ2(h)) ≤ 2 log(1 +
∑

i σi(h)). Due to the Cauchy Schwartz inequality we have

2 log(1 +
∑

i

σi(h))
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≤ 2 log

√

∑

i

σ2
i (h)

√

rank(Mh) +O(1)

≤ log rank(Mh) +O(1) ≤ logP +O(1).

The last step holds since Mh is the sum of P rank 1 matrices. We get the desired
lower bound.

To prove the remaining part of the theorem we argue as in the proof of Theo-
rem 4.1 that the sum of the selected singular values of Mh is large compared to the
sum of the selected singular values of Mf , then upper bound the former as above
by the rank of Mh and thus by P . The remaining argument is as in the proof of
Theorem 4.1.

Note that for IPn all singular values are 1/2n/2, so the entropy of their squares
is n, while the entropy of the squared diagonal Fourier coefficients is close to 0, since
these are all 〈IPn, χz,z〉2 = 1/22n. The log of the sum of all singular values yields a
linear lower bound. In this case the bounds of Lemma 6.6 and Theorem 4.1 are very
small, while Theorem 6.10 gives large bounds.

Ambainis [2] has observed that Theorem 6.10 can also be deduced from a lower
bound on the quantum communication complexity of sampling [3], using success am-
plification and an argument relating the smallest number of singular values whose
sum is at least 1− κ2

k/(4k) to the sum of the first k singular values in the presence of
sufficiently small error.

It is not clear whether Theorem 6.10 yields bounds that are always as large as the
bounds obtained by using other methods from this paper, i.e., whether the bounds
from Theorem 6.10 are always as good as the bounds from Theorems 4.1 of 6.1, or
might be significantly smaller for some functions.

The quantity σ1 + · · · + σk is known as the Ky Fan k-norm of a matrix [8]. Well
known examples of such norms are the cases k = 1, which is the spectral norm, and
the case of maximal k, known as the trace norm. The Ky Fan norms are unitarily in-
variant for all k, and there is a remarkable fact saying that if matrix A has smaller Ky
Fan k-norm than B for all k, then the same holds for every unitarily invariant norm.
This leads to the interesting statement that the Raz-type bound in Theorem 6.10 for
a function g is smaller than the respective bound for f for all k, iff for all unitarily
invariant matrix norms |||Mg||| ≤ |||Mf |||. Under the same condition the distribution
(σ2

1(f), . . . , σ2
2n(f)) induced by the singular values of Mf majorizes the distribution

(σ2
1(g), . . . , σ2

2n(g)) induced by Mg. This implies that H(σ2(f)) ≤ H(σ2(g)). Con-
versely we get an observation regarding the bounds in Theorem 6.10: if the entropy
bound for g is smaller than the entropy bound for f , then there is a k, so that the
Raz type bound for k applied to g is bigger than the corresponding bound for f .

6.4. Examples. To conclude this section we give examples of lower bounds prov-
able using the methods described by Theorem 6.1 and Corollary 1.3.

Theorem 6.12. BQC(MAJn) = Ω(n/ log n).
Proof. We change the range of MAJn to {−1,+1}. Now consider the Fourier

coefficient with index z = 1n. MAJn = g(x ∧ y) for a function g that is 1, if at least
n/2 of its inputs are one. W.l.o.g. let n/2 be an odd integer. Thus any input to g with
n/2 ones is accepted by both g and χz. Call the set of these inputs I. Similarly every
input to g with an odd number of ones larger than n/2 is accepted by both g and χz

and every input to g with an even number of ones smaller than n/2 is rejected by both
d and χz. On all other inputs g and χz disagree. Thus there are |I| inputs more being
classified correctly by χz than those being classified wrong. The Fourier coefficient
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ĝz is
(

n
n/2

)

/2n = Ω(1/
√
n). So the method of Theorem 6.1 gives the claimed lower

bound.
Note also that the average sensitivity of the function g withMAJn(x, y) = g(x∧y)

is Θ(
√
n).

As another example we consider a function g((x ∧ y) ⊕ z) with a nonsymmetric
g. Let MED(a) be the middle bit of the median of n/(2 log n) numbers of 2 log n
bits given in a. Let us compute a lower bound on the average sensitivity of MED.
For all inputs a there are Θ(n/ log n) numbers bigger than the median and smaller
than the median each. For each number p different from the median we can switch
a single bit to put the changed number below resp. above the median, shifting the
median in the sorted sequence by one position. For a random a such a bit flip entails
a change of the middle bit of the median with constant probability. Hence the average
sensitivity of MED is at least Ω(n/ log n). With Corollary 1.3 this gives us a lower
bound of Ω(

√
n/ log n) on the bounded error quantum communication complexity of

MED((x ∧ y) ⊕ z).

7. Application: Limits of Quantum Speedup. Consider COUNT t
n(x, y).

These functions do admit some speedup by quantum protocols, this follows from a
black box algorithm given in [9] (see also [5]), and the results of [11] connecting the
black box and the communication model.

Lemma 7.1. BQC(COUNT t
n) = O(

√
nt log n).

Note that the classical bounded error communication complexity of all COUNT t
n

is Θ(n), by a reduction from DISJn.
Theorem 7.2. Let t : IN → IN be any monotone increasing function with t(n) ≤

n/2. Then

BQC(COUNT t(n)
n ) ≥ Ω

(

t(n)

log t(n)
+ log n

)

.

Proof. First consider COUNT
n/2
n . This function is equivalent to a function

g(x ∧ y), in which g is 1 if the number of ones in its input is n/2, and −1 else.
Consider the Fourier coefficient for z = 1n. For simplicity assume that n is even and
n/2 is odd. Then ĝz = 2

(

n
n/2

)

/2n = Ω(1/
√
n). Thus the method of Theorem 6.1 gives

us the lower bound Ω(n/ log n). Note that finding this lower bound is much easier

than the computations in section 5 for HAM
n/2
n , since we have to consider only one

coefficient.
Now consider functions COUNT t

n for smaller t. The logarithmic lower bound is
obvious from the at most exponential speedup obtainable by quantum protocols [28].

Fixing n/2−t pairs of inputs variables to ones and n/2−t pairs of input variables
to zeroes leaves us with 2t pairs of free variables and the function accepts if COUNT t

2t

accepts on these inputs. Thus the lower bound follows.
Computing the bounds for t = n1−ǫ yields Corollary 1.4.

8. Discrepancy and Weakly Unbounded Error. The only general method
for proving lower bounds on the quantum bounded error communication complexity
used prior to this work has been the discrepancy method. We now characterize the
parameter disc(f) in terms of the communication complexity of f . Due to Fact 2.8
we get for all ǫ > 0

BQC1/2−ǫ(f) = Ω(log(ǫ/disc(f)))
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⇒ BQC1/2−ǫ(f) − log(ǫ) = Ω(log(1/disc(f))).

Thus UPC(f) ≥ UQC(f) = Ω(log(1/disc(f))).

Theorem 8.1. For all f : {0, 1}n × {0, 1}n → {0, 1} :
UPC(f) = O(log(1/disc(f)) + log n).
Proof. Let disc(f) = 1/2c. We first construct a protocol with public random-

ness, constant communication, and error 1/2 − 1/2c+1, using the Yao principle, and
then switch to a usual weakly unbounded protocol (with private randomness) with
communication O(c+ log n) and the same error using a result of Newman.

We know that for all distributions µ there is a rectangle with discrepancy at least
1/2c. Then the weight of ones is α+ 1/2c+1 and the weight of zeroes is α− 1/2c+1 or
vice versa on that rectangle (for some α ∈ [0, 1/2]).

We take that rectangle and partition the rest of the communication matrix into 2
more rectangles. Assign to each rectangle the label 0 or 1 depending on the majority
of function values in that rectangle according to µ. The error of the rectangles is at
most 1/2. If a protocol outputs the label of the adjacent rectangle for every input,
the error according to µ is only 1/2 − 1/2c+1.

This holds for all µ. Furthermore the rectangle partitions lead to deterministic
protocols with O(1) communication and error 1/2 − 1/2c+1: Alice sends the names
of the rectangles that are consistent with her input. Bob then picks the label of the
only rectangle consistent with both inputs.

We now invoke the following lemma due to Yao (as in [29]).
Fact 8.2. The following statements are equivalent for all f :

1. For each distribution µ there is a deterministic protocol for f with error ǫ
and communication d.

2. There is a randomized protocol in which both players can access a public
source of random bits, so that f is computed with error probability ǫ (over the random
coins), and the communication is d.

So we get an O(1) communication randomized protocol with error probability
1/2 − 1/2O(c) using public randomness. We employ the following result from [31] to
get a protocol with private randomness.

Fact 8.3. Let f be computable by a probabilistic protocol with error ǫ, that
uses public randomness and d bits of communication. Then BPC(1+δ)ǫ(f) = O(d +
log( n

ǫδ )).

We may now choose δ = 1/2O(c) small enough to get a weakly unbounded error
protocol for f with cost O(c+ log n).

Let us also consider the quantum version of weakly unbounded error protocols.
Theorem 8.4. For all f : UPC(f) = Θ(UQC(f)).
Proof. The lower bound is trivial, since the quantum protocol can simulate the

classical protocol.
For the upper bound we have to construct a classical protocol from a quantum

protocol. Consider a quantum protocol with error 1/2−ǫ ≤ 1/2−1/2c and communi-
cation c. Due to Lemma 3.3 this gives us a set of 2O(c) weighted rectangles, such that
the sum of the rectangles approximates the communication matrix componentwise
within error 1/2 − ǫ/2. The weights are real ±α with absolute value smaller than
1. Label the −α weighted rectangles with 0 and the other rectangles with 1, and
add (1/2)/α rectangles covering all inputs and bearing label 0. This clearly yields a
majority cover of size 2O(c), which is equivalent to a classical weakly unbounded error
protocol using communication O(c) due to Fact 2.3.



24 H. Klauck

It is easy to see that there are weakly unbounded error protocols for MAJn,
HAM t

n, and COUNT t
n with cost O(log n). For MAJn consider the protocol where

Alice picks a random i from 1 to n and sends i, xi. If xi = yi = 1 they accept. Clearly,
if n is odd this protocol is correct with probability 1/2 + 1/(2n). For even n > 2 the
protocol must be modified by accepting every input with probability 1/n beforehand.
Other threshold predicates can be computed similarly.

For HAM t
n we have w.l.o.g. that t ≤ n/2, since otherwise we can just complement

x and use a protocol for t′ = n− t. If we have a protocol that works for t = n/2 and
even n, we can just add n − 2t dummy inputs (which are all different for Alice and
Bob) to solve the problem for other t, since t+(n− 2t) = n− t = (n+n− 2t)/2. The

protocol for HAM
n/2
n goes as follows: Alice rejects unconditionally with probability

1/3 + 1/(8n2), and otherwise picks i1, i2 from 1 to n and sends them along with the
corresponding xi. Bob now accepts if xi1 6= yi1 ∨xi2 = yi2 . For inputs with Hamming
distance d the acceptance probability is (2/3 − 1/(8n2)) · (1 − (d/n) · (1 − d/n)). So
inputs with d = n/2 are accepted with probability 1/2 − 1/O(n2), all other inputs
are accepted with probability at least 1/2 + 1/O(n2). The protocol for COUNT t

n is
similar.

So all these problems allow only small discrepancy bounds.
Lemma 8.5. For f ∈ {MAJn,HAM

t
n, COUNT

t
n} : maxµ log(1/discµ(f)) =

O(log n).
MAJn is even a complete problem for the class of problems computable with

polylogarithmic cost by weakly unbounded error protocols. To see this note that this
class is equal to the class of majority nondeterministic protocols with polylogarithmic
communication [20] and so MAJn is complete by the techniques of [4].

9. Discussion. In this paper we have investigated the problem of proving lower
bounds on the bounded error quantum communication complexity. As opposed to
previous approaches our methods are both general and make use of the quantum
properties of the protocols (i.e., do not implicitly follow the pattern of simulating a
bounded error quantum protocol by an unbounded error classical protocol and em-
ploying a lower bound method suitable for the latter). Our results are strong enough
to show separations between unbounded error classical and bounded error quantum
communication resp. between quantum nondeterministic and quantum bounded error
communication.

Our results do not address the more powerful model of quantum communication
complexity with prior entanglement [13, 14]. It would be interesting to obtain similar
results for this model. Recently an improved lower bound (compared to [14]) for the
complexity of IPn in this model has been obtained in Nayak and Salzman [30]. This
bound does not show hardness under a distribution like in the second statement of
Fact 2.8, though. So constructions similar to that of Theorem 6.1 remain unknown
for the model with prior entanglement.

More recently Razborov [37] has obtained much stronger lower bounds on the
quantum communication complexity of g(x ∧ y) for symmetric functions g, almost
tightly characterizing the quantum bounded error communication complexity of these
functions, even in the model with prior entanglement. This gives a Ω(

√
n) lower bound

for DISJn, while previously superlogarithmic bounds for this function were known
only for the cases when strong restrictions on the interaction are imposed [27] or
when the error probability is extremely small [12]. Razborov’s techniques are based
on showing good lower bounds on the minimal trace norm (sum of singular values)
of matrices approximating the communication matrix, similar to the approach in
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Theorem 6.10. These new results can be used to show that in our Corollary 1.4
actually the upper bounds for COUNT t

n are almost tight.

The lower bound methods of this paper can also be applied to other types of
functions, see sections 5 and 6.4. It would be interesting to find tighter lower bounds
for these functions and to extend our results to the model with prior entanglement.

A major open problem in the area is to determine whether quantum bounded error
communication can ever be more than quadratically smaller than classical bounded
error communication for total functions. A first step to resolve this problem would
be to show a lower bound in terms of (one-sided) block sensitivity on the quantum
bounded error complexity of all functions g(x ∧ y) (with nonsymmetric g).

Regarding unbounded error protocols, a result of Forster [17] can easily be ex-
tended to show that the discrepancy bound restricted to the uniform distribution is a
lower bound on the unbounded error quantum communication complexity (when not
its weak variant as considered in this paper, but the communication of protocols with
error less than 1/2 is measured). If this result could be extended to discrepancy for
all distributions, then both types of unbounded error protocols would coincide due to
Theorem 8.1.

Finally, let us mention that the known quantum protocols that give a speedup
compared to randomized protocols for total functions need much interaction, i.e.,
many communication rounds. It has recently been shown recently by Jain et al. [38]
that this in inevitable for DISJn. Is there a function g(x ⊕ y) which cannot be
computed optimally by a 1-round protocol?

Acknowledgements. The author wishes to thank Ronald de Wolf for bringing
[35] to his attention and for lots of valuable discussions, and Andris Ambainis for
pointing out a mistake in an earlier version of the paper.

REFERENCES

[1] S. Aaronson and A. Ambainis, Quantum search of spatial regions, In Proceedings of 44th
IEEE Symposium on Foundations of Computer Science, 2003, pp. 200–209.

[2] A. Ambainis, Personal Communication, Oct. 2001.
[3] A. Ambainis, L. J. Schulman, A. Ta-Shma, U. Vazirani, and A. Wigderson, The quantum

communication complexity of sampling, SIAM Journal on Computing, vol. 32(6), 2003,
pp. 1570–1585.

[4] L. Babai, P. Frankl, J. Simon, Complexity classes in communication complexity theory, 27th
IEEE Symposium on Foundations of Computer Science, 1986, pp. 303–312.

[5] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf, Quantum Lower Bounds by

Polynomials, Journal of the ACM, vol. 48(4), 2001, pp. 778–797. Also: quant-ph/9802049.
[6] C.H. Bennett, S.J. Wiesner, Communication via One- and Two-Particle Operators on

Einstein-Podolsky-Rosen States, Phys. Review Letters, vol. 69, 1992, pp. 2881–2884.
[7] E. Bernstein, U. Vazirani, Quantum Complexity Theory, SIAM Journal on Computing,

vol. 26, 1997, pp. 1411-1473.
[8] R. Bhatia, Matrix Analysis, Springer, 1997.
[9] G. Brassard, P. Høyer, A. Tapp, Quantum Counting, 25th Int. Colloquium on Automata,

Languages, and Programming, 1998, pp. 820–831. Also: quant-ph/9805082.

[10] H. Buhrman, Quantum computing and communication complexity, EATCS Bulletin, 2000,
pp. 131–141.

[11] H. Buhrman, R. Cleve, A. Wigderson, Quantum vs. classical communication and com-

putation, 30th ACM Symposium on Theory of Computing, 1998, pp. 63–68. Also:
quant-ph/9802040.

[12] H. Buhrman, R. de Wolf, Communication Complexity Lower Bounds by Polynomials, 16th
IEEE Conference on Computational Complexity, 2001, pp. 120–130. Also: cs.CC/9910010.

[13] R. Cleve, H. Buhrman, Substituting quantum entanglement for communication, Phys. Rev. A
56, 1997, pp. 1201-1204. Also: quant-ph/9704026.



26 H. Klauck

[14] R. Cleve, W. van Dam, M. Nielsen, A. Tapp, Quantum Entanglement und the Communi-

cation Complexity of the Inner Product Function, 1st NASA Int. Conference on Quantum
Computing und Quantum Communications, 1998. Also: quant-ph/9708019.

[15] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley Series in Telecommuni-
cations, 1991.

[16] C. Damm, M. Krause, C. Meinel, S. Waack, Separating counting communication complexity

classes, 9th Symposium on Theoretical Aspects of Computer Science, 1992, pp. 281–292.
[17] J. Forster, A Linear Lower Bound on the Unbounded Error Probabilistic Communication

Complexity, 16th IEEE Conference on Computational Complexity, 2001, pp. 100–106.
[18] R.M. Gray, Entropy and Information Theory, Springer, 1990.
[19] L.K. Grover, A fast quantum mechanical algorithm for database search, 28th ACM Sympo-

sium on Theory of Computing, 1996, pp. 212-219. Also: quant-ph/9605043.

[20] B. Halstenberg, R. Reischuk, Relations between communication complexity classes, Journal
of Computer and System Sciences, vol. 41, 1990, pp. 402–429.

[21] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[22] P. Høyer, R. de Wolf, Improved Quantum Communication Complexity Bounds for Disjoint-

ness and Equality, 19th Symposium on Theoretical Aspects of Computer Science, 2002,
pp. 299–310. Also: quant-ph/0109068.

[23] J. Kahn, G. Kalai, N. Linial, The influence of variables on Boolean functions, 29th IEEE
Symposium on Foundations of Computer Science, 1988, pp. 68–80.

[24] B. Kalyanasundaram, G. Schnitger, The Probabilistic Communication Complexity of Set

Intersection, SIAM Journal Discrete Math., vol. 5, 1992, pp. 545-557.
[25] H. Klauck, Quantum Communication Complexity, Workshop on Boolean Functions and Ap-

plications at the 27th Int. Colloquium on Automata, Languages, and Programming, 2000,
pp. 241–252. Also: quant-ph/0005032.

[26] H. Klauck, Lower Bounds for Quantum Communication Complexity, 42nd IEEE Symposium
on Foundations of Computer Science, 2001, pp. 288–297. Also: quant-ph/0106160.

[27] H. Klauck, A. Nayak, A. Ta-Shma, D. Zuckerman, Interaction in Quantum Communication

and the Complexity of Set Disjointness, 33rd ACM Symposium on Theory of Computing,
2001, pp. 124–133.

[28] I. Kremer, Quantum Communication, Master’s thesis (Hebrew University), 1995.
[29] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge University Press, 1997.
[30] A. Nayak, J. Salzman, On communication over an entanglement-assisted quantum channel,

34th ACM Symposium on Theory of Computing, 2002, pp. 698-704.
[31] I. Newman, Private vs. Common Random Bits in Communication Complexity, Information

Processing Letters, vol. 39, 1991, pp. 67–71.
[32] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge

University Press, 2000.
[33] N. Nisan, The Communication Complexity of Threshold Gates, Combinatorics, Paul Erdős is
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