Theory of Computing

Lecture 14 MAS 714 Hartmut Klauck

Part II Overview

- Problems that cannot be solved efficiently
 - P vs. NP
 - Time Hierarchy
- Problems that cannot be solved at all
 Computability
- Weaker models of computation

 Finite Automata

Languages

• Definition:

- An *alphabet* is a finite set of symbols
- \varGamma^* is the set of all finite sequences/strings over the alphabet \varGamma
- A language over alphabet \varGamma is a subset of \varGamma^*
- A machine *decides* a language L if on input x it outputs
 1 if x∈L and 0 otherwise
- A *complexity class* is a set of languages that can be computed given some restricted resources

The Class P

 The class P consists of all languages that can be decided in polynomial time

- Which machine model?
 - RAM's with the logarithmic cost measure
 - Simpler: Turing machines
 - Polynomial size circuits (with simple descriptions)

The Class P

- For technical reasons P contains only decision problems
- Example: Sorting can be done in polynomial time, but is not a language
- Decision version:
 - ElementDistinctness={x₁,..., x_n: the x_i are pairwise distinct strings of length n}
- ElementDistinctness \in P

The Class P

- Problems solvable in polynomial time?
 - Sorting
 - Minimum Spanning Trees
 - Matching
 - Max Flow
 - Shortest Path
 - Linear Programming
 - Many more
- Decision version example: {G,W,K: there is a spanning tree of weight at most K in G}

Turing Machine

- Defined by Turing in 1936 to formalize the notion of computation
- A Turing machine has a finite control and a 1dimensional storage tape it can access with its read/write head

• Operation: the machine reads a symbol from the tape, does an internal computation and writes another symbol to the tape, moves the head

Turing Machine

- A Turing machine is a 8-tuple (Q, Γ , b, Σ , q₀, A,R, δ)
- Q: set of states of the machine
- Γ : tape alphabet
- $b \in \Gamma$: blank symbol
- $\Sigma \subseteq \Gamma$ -{b}: input alphabet
- $q_0 \in Q$: initial state
- A,R \subseteq Q: accepting/rejecting states
- δ: Q- (A∪R) × Γ → Q×Γ×{left,stay,right}: transition function

Operation

- The tape consists of an infinite number of cells labeled by all integers
- In the beginning the tape contains the input x∈∑* starting at tape cell 0
- The rest of the tape contains blank symbols
- The machine starts in state q_0
- The head is on cell 0 in the beginning

Operation

- In every step the machine reads the symbol z at the position of the head
- Given z and the current state q it uses δ to determine the new state, the symbol that is written to the tape and the movement of the head
 - left, stay, right
- If the machine reaches a state in A it stops and accepts, on states in R it rejects

Example Turing Machine

- To compute the parity of $x \in \{0,1\}^*$
- Q={q₀, q₁, q_a, q_r}
- *Γ*={0,1,b}

$$\begin{split} \delta: \\ q_0, 1 &\to q_1, b, right \\ q_0, 0 &\to q_0, b, right \\ q_1, 1 &\to q_0, b, right \\ q_1, 0 &\to q_1, b, right \\ q_1, b &\to q_a \\ q_0, b &\to q_r \end{split}$$

Example

- The Turing machine here only moves right and does not write anything useful
 - It is a finite automaton

Correctness/Time

- A TM *decides* L if it accepts all x∈L and rejects all x not in L (and halts on all inputs)
- The time used by a TM on input x is the number of steps [evaluations of δ] before the machine reaches a state in A or R
- The time complexity of a TM M is the function ${\rm t_M}$ that maps n to the largest time used on any input in \varSigma ^ n
- The time complexity of L is upper bounded by g(n) if there is a TM M that decides L and has $t_M(n) \le O(g(n))$

Notes

- DTIME(f(n)) is the class of all languages that have time complexity at most O(f(n))
- P is the class of languages L such that the time complexity of L can be upper bounded by a fixed polynomial in n [with a fixed highest power of n appearing in p]
- There are languages for which there is no asymptotically fastest TM [Speedup theorem]

Space

- The space used by a TM M on an input x is the number of cells visited by the head
- The space complexity of M is the function s_{M} mapping n to the largest space used on $x{\in}\varSigma^{n}$
- The space complexity of L is upper bounded by g(n) if there is a TM that decides L and s_M(n)=O(g(n))

Facts

- A Turing machine can simulate a RAM with log cost measure such that
 - polynomial time RAM gives a polynomial time TM
- A log-cost RAM can simulate a TM
 - Store the tape in the registers
 - Store the current state in a register
 - Each register stores a symbol or state [O(1) bits]
 - Store also the head position in a register [log s_M bits]
 - Compute the transition function by table lookup
- Hence the definition of P is robust

Criticism

- P is supposed to represent efficiently solvable problems
- P contains only languages
 - Can identify a problem with many outputs with a set of languages (one for each output bit)
- Problems with time complexity n¹⁰⁰⁰ are deemed easy while problems with time complexity 2^{n/100000} hard
- Answer: P is mainly a theoretical tool
- In practice such problems don't seem to arise
- Once a problem is known to be in P we can start searching for more efficient algorithms

Criticism

- Turing machines might not be the most powerful model of computation
- All computers currently built can be simulated efficiently
 - Small issue: randomization
- Some models have been proposed that are faster, e.g. analogue computation
 - Usually not realistic models
- Exception: Quantum computers
 - Quantum Turing machines are probably faster than Turing machines for some problems

Why P?

• P has nice closure properties

- **Example:** closed under calling subroutines:
 - Suppose $R \in P$
 - If there is a polynomial time algorithm that solves
 L given a *free* subroutine that computes R, then L is also in P

Variants of TM

- Several tapes
 - Often easier to describe algorithms
 - Example: Palindrome={xy: x is y in reverse}
 - Compute length, copy x on another tape, compare x and y in reverse
 - Any 1-tape TM needs quadratic time
 - Any TM with O(1) tapes and time T(n) can be simulated by a 1-tape TM using time O(T(n)²)