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Part II Overview

• Problems that cannot be solved efficiently

– P vs. NP

– Time Hierarchy

• Problems that cannot be solved at all

– Computability

• Weaker models of computation

– Finite Automata



Languages

• Definition:

– An alphabet is a finite set of symbols

– ¡* is the set of all finite sequences/strings over the 
alphabet ¡

– A language over alphabet ¡ is a subset of ¡*

– A machine decides a language L if on input x it outputs 
1 if x2L and 0 otherwise

• A complexity class is a set of languages that can 
be computed given some restricted resources



The Class P

• The class P consists of all languages that can 
be decided in polynomial time

• Which machine model?

– RAM’s with the logarithmic cost measure

– Simpler: Turing machines

– Polynomial size circuits (with simple descriptions) 



The Class P

• For technical reasons P contains only decision 
problems

• Example: Sorting can be done in polynomial 
time, but is not a language

• Decision version:

– ElementDistinctness={x1,…, xn: the xi are pairwise 
distinct strings of length n}

• ElementDistinctness2P



The Class P

• Problems solvable in polynomial time?
– Sorting

– Minimum Spanning Trees 

– Matching

– Max Flow

– Shortest Path

– Linear Programming

– Many more

• Decision version example: {G,W,K: there is a 
spanning tree of weight at most K in G}



Turing Machine

• Defined by Turing in 1936 to formalize the notion 
of computation

• A Turing machine has a finite control and a 1-
dimensional storage tape it can access with its 
read/write head

• Operation: the machine reads a symbol from the 
tape, does an internal computation and writes 
another symbol to the tape, moves the head



Turing Machine

• A Turing machine is a 8-tuple
(Q, ¡, b, §, q0, A,R, ±)

• Q: set of states of the machine
• ¡: tape alphabet
• b2¡: blank symbol
• §µ¡-{b}: input alphabet
• q02 Q: initial state
• A,R µ Q: accepting/rejecting states
• ±: Q- (A[R) £ ¡ → Q£¡£{left,stay,right}: 

transition function



Operation

• The tape consists of an infinite number of cells 
labeled by all integers

• In the beginning the tape contains the input 
x2§* starting at tape cell 0

• The rest of the tape contains blank symbols

• The machine starts in state q0

• The head is on cell 0 in the beginning 



Operation

• In every step the machine reads the symbol z 
at the position of the head

• Given z and the current state q it uses ± to 
determine the new state, the symbol that is 
written to the tape and the movement of the 
head 
– left, stay, right

• If the machine reaches a state in A it stops and 
accepts, on states in R it rejects



Example Turing Machine

• To compute the parity of x2{0,1}*

• Q={q0, q1, qa, qr}

• ¡={0,1,b}

• ±:
q0 ,1 → q1,b, right
q0,0  → q0,b, right
q1,1  → q0,b, right
q1,0  → q1,b, right
q1, b → qa
q0,b  → qr



Example

• The Turing machine here only moves right and 
does not write anything useful

– It is a finite automaton



Correctness/Time

• A TM decides L if it accepts all x2L and rejects all 
x not in L (and halts on all inputs)

• The time used by a TM on input x is the number 
of steps [evaluations of ±] before the machine 
reaches a state in A or R

• The time complexity of a TM M is the function tM
that maps n to the largest time used on any input 
in § n

• The time complexity of L is upper bounded by 
g(n) if there is a TM M that decides L and has 
tM(n)· O(g(n))



Notes

• DTIME(f(n)) is the class of all languages that 
have time complexity at most O(f(n))

• P is the class of languages L such that the time 
complexity of L can be upper bounded by a 
fixed polynomial in n   [with a fixed highest 
power of n appearing in p]

• There are languages for which there is no 
asymptotically fastest TM [Speedup theorem]



Space

• The space used by a TM M on an input x is the 
number of cells visited by the head

• The space complexity of M is the function sM

mapping n to the largest space used on x2§
n

• The space complexity of L is upper bounded 
by g(n) if there is a TM that decides L and 
sM(n)=O(g(n))



Facts

• A Turing machine can simulate a RAM with log 
cost measure such that
– polynomial time RAM gives a polynomial time TM

• A log-cost RAM can simulate a TM
– Store the tape in the registers
– Store the current state in a register
– Each register stores a symbol or state [O(1) bits] 
– Store also the head position in a register [log sM bits]
– Compute the transition function by table lookup

• Hence the definition of P is robust



Criticism

• P is supposed to represent efficiently solvable 
problems

• P contains only languages
– Can identify a problem with many outputs with a set of 

languages (one for each output bit)

• Problems with time complexity n1000 are deemed easy 
while problems with time complexity 2n/100000 hard

• Answer: P is mainly a theoretical tool
• In practice such problems don’t seem to arise
• Once a problem is known to be in P we can start 

searching for more efficient algorithms



Criticism

• Turing machines might not be the most powerful 
model of computation

• All computers currently built can be simulated 
efficiently
– Small issue: randomization

• Some models have been proposed that are faster, e.g. 
analogue computation
– Usually not realistic models

• Exception: Quantum computers
– Quantum Turing machines are probably faster than Turing 

machines for some problems



Why P?

• P has nice closure properties

• Example: closed under calling subroutines:

– Suppose R2P

– If there is a polynomial time algorithm that solves 
L given a free subroutine that computes R, then L 
is also in P



Variants of TM

• Several tapes

– Often easier to describe algorithms

• Example: Palindrome={xy: x is y in reverse}

• Compute length, copy x on another tape, compare x 
and y in reverse

• Any 1-tape TM needs quadratic time

– Any TM with O(1) tapes and time T(n) can be 
simulated by a 1-tape TM using time O(T(n)2)


