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Organization:

• Lectures:
Mon  10:30-11:30                      TR+12
Tue    10:30-12:30

• Tutorial:
Tue 11:30-12:30

• Exceptions: This week no tutorial, next week 
no tutorial



Organization

• Final: 60%, Midterm: 20%, Homework: 20%

• There will be 4 sets of homework

– First homework on September 2, to be handed in 
on September 10

– Each set of homework is 5%

• http://www.ntu.edu.sg/home/hklauck/MAS714.htm



Books:

• Cormen, Leiserson, Rivest, Stein:
Introduction to Algorithms

• Sipser: Introduction to the Theory of 
Computation

• Arora, Barak: Computational Complexity - A 
Modern Approach



Theory of Computing



Overview

• First Half: Efficient Algorithms
– Sorting

– Graph Algorithms

– Data Structures

– Linear Programming

• Second Half: Theory of Computing
– Computational Complexity

– Computability

– Formal Languages



Computation

• Computation: Mapping inputs to outputs in a 
prescribed way, by small, easy steps

• Example: Multiplication

– Mult(a,b)=c such that a*b=c

• How to find c?

• School method 



Algorithms

• An algorithm is a procedure for performing a 
computation

• Algorithms consist of elementary 
steps/instructions

• Elementary steps depend on the model of 
computation
– Example: C++ commands

– Models Like Turing machines allow very simple 
steps only



Algorithms: Example

• Gaussian Elimination

– Input: Matrix M

– Output: Triangular Matrix that is row-equivalent 
to M

– Elementary operations: row operations

• swap, scale, add



Algorithms

• Algorithms are named after Al-Khwārizmī
(Abū ʿAbdallāh Muḥammad ibn Mūsā al-Khwārizmī)
c. 780-850 ce
Persian mathematician and astronomer

• (Algebra is also named after his work)

• His works (later) brought the positional system 
of numbers  to the attention of Europeans



Algorithms: Example

• Addition via the school method:
– Write numbers under each other

– Add number position by position moving a „carry“ 
forward

• Elementary operations:
– Add two numbers between 0 and 9

(memorized)

– Read and Write

• Can deal with arbitrarily long numbers!



Datastructure

• The addition algorithm uses (implicitly) an 
array as datastructure

– An array is a fixed length vector of cells that can 
each store a number/digit

– Note that when we add x and y then x+y is at most
1 digit longer than max{x,y}

– So the result can be stored in an array of length 
n+1 (where n allows to store x or y)



Multiplication

• The school multiplication algorithm is an 
example of a reduction

• First we learn how to add n numbers with n 
digits each

• To multiply x and y we generate n numbers 
xi¢ y¢ 10i and add them up

• Reduction from Multiplication to Addition



Complexity

• We usually analyze algorithms to grade the
performance

• The most important (but not the only) 
parameters are time and space

• Time refers to the number of elementary
steps

• Space refers to the storage needed during the
computation



Example: Addition

• Assume we add two numbers x,y with n 
decimal digits

• Clearly the number of elementary steps
(adding digits etc) grows linearly with n

• Space is also  ¼n

• Typical: asymptotic analysis



Example: Multiplication

• We generate n numbers with at most 2n digits, 
add them

• Number of steps is O(n2)
• Space is O(n2)

– Easy to reduce to O(n)

• Much faster algorithms exist
– (but not easy to do with pen and paper)

• Question: Is multiplication harder than addition?
– Answer: we don‘t know...



Our Model of Computation

• We could use Turing machines...

• Will consider algorithms in a richer model, a 
RAM

• RAM:

– random access machine

• Basically we will just use pseudocode/informal 
language



RAM

• Random Access Machine
– Storage is made of registers that can hold a 

number (an unlimited amount of registers is 
available)

– The machine is controlled by a finite program

– Instructions are from a finite set that includes
• Fetching data from a register into a special register

• Arithmetic operations on registers

• Writing into a register

• Indirect addressing



RAM

• Random Access Machines and Turing 
Machines can simulate each other

• There is a universal RAM

– Can simulate all other RAMs when given their 
program

• RAM’s are very similar to actual computers

– machine language



Computation Costs

• The time cost of a RAM step involving 1 or 2 
registers is the logarithm of the numbers stored
– logarithmic cost measure

– adding numbers with n bits takes time n etc.

• The time cost of a RAM program is the sum of the 
time costs of its steps
– For a fixed input

• Space used is the sum (over all registers used) of 
the logarithms of the maximum numbers stored 
in the register



Other Machine models

• Turing Machines (we will define them later)

• Circuits

• Many more!

• A machine model is universal, if it can 
simulate any computation of a Turing machine

• RAM’s are universal

– Vice versa, Turing machines can simulate RAM’s



Types of Algorithm Analysis

• Usually we will use asymptotic analysis
– Reason: next year‘s computer will be faster, so 

constant factors don‘t matter (usually)

– Understand the inherent complexity of a problem (can
you multiply in linear time?)

– Usually gives the right answer in practice

• Worst case analysis
– The running time of an algorithm is the maximum 

time used over all inputs

– On the safe side for all inputs…



Other Types of Analysis

• Average case:

– Average under which distribution?

– Often the uniform distribution, but may be unrealistic

• Amortized analysis:

– Sometimes after some costly preparations we can
solve many problem instances cheaply

– Count the average cost of an instance (preparation
costs are spread between instances)

– Often used in datastructure analysis



Asymptotic Analysis

• Different models of computation lead to 
different running times
– E.g. depending on the instruction set

• Also, real computers become faster through 
faster processors
– Same sequence of operations performed faster

• Therefore we generally are not interested in 
constant factors in the running time
– Unless they are very bad



O, , £

• Let f,g be two monotonically increasing 
functions that send N to R+

• f=O(g)      if     9 n0,c  8 n>n0: f(n) · c g(n)

• Example:
f(n)=n, g(n)=1000n+100 ) g(n)=O(f(n))

– Set c=1001 and n0=100

• Example:
f(n)=n log n, g(n)=n2



O, , £

• Let f,g be two monotonically increasing 
functions that send N to R+

• f = (g)   iff g=O(f) 

– Definition by Knuth

• f = £(g)   iff [ f=O(g) and g=O(f) ]

• o, !: asymptotically smaller/larger

• E.g.,    n=o(n2) 

• But     2n2 + 100 n=£(n2) 



Some functions

2n+10
n2/500
n log(n)/2



Sorting

• Computers spend a lot of time sorting!
• Assume we have a list of numbers x1,…,xn from a 

universe U
• For simplicity assume the xi are distinct
• The goal is to compute a permutation ¼ such that

x ¼(1)<  x¼(2) <    <  x¼(n)

• Think of a deck of cards
• Often the numbers have additional information 

attached
– E.g. Telephone book



InsertionSort

• An intuitive sorting algorithm
• The input is provided in A[1…n]
• Code:

for i = 2 to n, 
for (k = i; k > 1 and A[k] < A[k-1]; k--)

swap A[k,k-1]

→ invariant: A[1..i] is sorted
end

• Clear: O(n2) comparisons and O(n2) swaps
• Algorithm works in place, i.e., uses linear space



Correctness

• By induction
• Base case: n=2:

We have one conditional swap operation, hence 
the output is sorted

• Induction Hypothesis:
After iteration i the elements A[1]…A[i] are sorted

• Induction Step:
Consider Step i+1. A[1]…A[i] are sorted already. 
Inner loop starts from A[i+1] and moves it to the 
correct position. After this A[1]…A[i+1] are 
sorted.



Best Case

• In the worst case Insertion Sort takes time 
(n2)

• If the input sequence is already sorted the 
algorithms takes time O(n)

• The same is true if the input is almost sorted

– important in practice

• Algorithm is simple and fast for small n



Worst Case

• On some inputs InsertionSort takes (n2) 
steps

• Proof: consider a sequence that is decreasing, 
e.g., n,n-1,n-2,…,2,1

• Each element is moved from position i to
position 1

• Hence the running time is at least
i=1,…,n i   = (n2)



Can we do better?

• Attempt 1:
Searching for the position to insert the next
element is inefficient, employ binary search

• Ordered search:
– Given an array A with n numbers in a sorted 

sequence,  and a number x, find the smallest i such 
that  A[i] >= x

• Use A[n+1]=1



Linear Search

• Simplest way to search

• Run through A (from 1 to n) and compare A[i] 
with x until A[i] >= x is found, output i

• Time: £(n)

• Can also be used to search unsorted Arrays



Binary Search

• If the array A is sorted already, we can find an 
item much faster!

• Assume we search for a x among A[1]<...<A[n]

• Algorithm (to be first called with l=1 and r=n):
– BinSearch(x,A,l,r]

• If r-l=0 test if A[l]=x, end

– Compare A[(r-l)/2+l] with x

– If A[(r-l)/2+l]=x output (r-l)/2+l, end

– If A[(r-l)/2+l]> x BinSearch(x,A,l,(r-l)/2+l)

– If A[(r-l)/2+l]< x Bin Search(x,A,(r-l)/2+l,r) 



Time of Binary Search

• Define T(n) as the time/number of comparisons 
needed on Arrays of length n

• T(2)=1
• T(n)=T(n/2)+1

• Solution: T(n)=log(n)

• logs have base 2 usually
– In asymptotic analysis the base of the logarithms does 

not matter (as long as it’s constant)



Recursion

• We just described an algorithm via recursion:
a procedure that calls itself

• This is often convenient but we must make 
sure that the recursion eventually terminates

– Have a base case (here r=l)

– Reduce some parameter in each call (here r-l)



Binary Insertion Sort

• Using binary search in InsertionSort reduces 
the number of comparisons to O(n log n)

– The outer loop is executed n times, each inner 
loop now uses log n comparisons

• Unfortunately the number of swaps does not 
decrease:

– To insert an element we need to shift the 
remaining array to the right!


