Theory of Computing

Lecture 1
MAS 714
2019
Hartmut Klauck

Organization:

• Lectures:

Mon 10:30-11:30 TR+12

Tue 10:30-12:30

Tutorial:

Tue 11:30-12:30

 Exceptions: This week no tutorial, next week no tutorial

Organization

• Final: 60%, Midterm: 20%, Homework: 20%

- There will be 4 sets of homework
 - First homework on September 2, to be handed in on September 10
 - Each set of homework is 5%
- http://www.ntu.edu.sg/home/hklauck/MAS714.htm

Books:

- Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms
- Sipser: Introduction to the Theory of Computation
- Arora, Barak: Computational Complexity A Modern Approach

Theory of Computing

ALGORITHMS

CRYPTOGRAPHY

DATA STRUCTURES

COMPLEXITY

MACHINE MODELS

UNCOMPUTABLE

FORMAL LANGUAGES

UNIVERSALITY

PROOF SYSTEMS

Overview

- First Half: Efficient Algorithms
 - Sorting
 - Graph Algorithms
 - Data Structures
 - Linear Programming
- Second Half: Theory of Computing
 - Computational Complexity
 - Computability
 - Formal Languages

Computation

 Computation: Mapping inputs to outputs in a prescribed way, by small, easy steps

- Example: Multiplication
 - Mult(a,b)=c such that a*b=c
 - How to find c?
 - School method

Algorithms

- An algorithm is a procedure for performing a computation
- Algorithms consist of elementary steps/instructions
- Elementary steps depend on the model of computation
 - Example: C++ commands
 - Models Like Turing machines allow very simple steps only

Algorithms: Example

- Gaussian Elimination
 - Input: Matrix M
 - Output: Triangular Matrix that is row-equivalent to M
 - Elementary operations: row operations
 - swap, scale, add

Algorithms

- Algorithms are named after Al-Khwārizmī
 (Abū 'Abdallāh Muḥammad ibn Mūsā al-Khwārizmī)
 - c. 780-850 ce
 - Persian mathematician and astronomer
- (Algebra is also named after his work)
- His works (later) brought the positional system of numbers to the attention of Europeans

Algorithms: Example

- Addition via the school method:
 - Write numbers under each other
 - Add number position by position moving a "carry" forward
- Elementary operations:
 - Add two numbers between 0 and 9 (memorized)
 - Read and Write
- Can deal with arbitrarily long numbers!

Datastructure

- The addition algorithm uses (implicitly) an array as datastructure
 - An array is a fixed length vector of cells that can each store a number/digit
 - Note that when we add x and y then x+y is at most1 digit longer than max{x,y}
 - So the result can be stored in an array of length n+1 (where n allows to store x or y)

Multiplication

- The school multiplication algorithm is an example of a reduction
- First we learn how to add n numbers with n digits each
- To multiply x and y we generate n numbers $x_i \cdot y \cdot 10^i$ and add them up
- Reduction from Multiplication to Addition

Complexity

- We usually analyze algorithms to grade the performance
- The most important (but not the only) parameters are time and space
- Time refers to the number of elementary steps
- Space refers to the storage needed during the computation

Example: Addition

- Assume we add two numbers x,y with n decimal digits
- Clearly the number of elementary steps (adding digits etc) grows linearly with n
- Space is also \approx n

Typical: asymptotic analysis

Example: Multiplication

- We generate n numbers with at most 2n digits, add them
- Number of steps is O(n²)
- Space is O(n²)
 - Easy to reduce to O(n)
- Much faster algorithms exist
 - (but not easy to do with pen and paper)
- Question: Is multiplication harder than addition?
 - Answer: we don't know...

Our Model of Computation

- We could use Turing machines...
- Will consider algorithms in a richer model, a RAM
- RAM:
 - random access machine

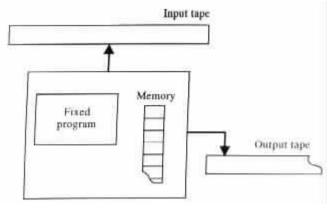
 Basically we will just use pseudocode/informal language

RAM

- Random Access Machine
 - Storage is made of registers that can hold a number (an unlimited amount of registers is available)
 - The machine is controlled by a finite program
 - Instructions are from a finite set that includes
 - Fetching data from a register into a special register
 - Arithmetic operations on registers
 - Writing into a register
 - Indirect addressing

RAM

- Random Access Machines and Turing Machines can simulate each other
- There is a universal RAM
 - Can simulate all other RAMs when given their program
- RAM's are very similar to actual computers
 - machine language



Computation Costs

- The time cost of a RAM step involving 1 or 2 registers is the logarithm of the numbers stored
 - logarithmic cost measure
 - adding numbers with n bits takes time n etc.
- The time cost of a RAM program is the sum of the time costs of its steps
 - For a fixed input
- Space used is the sum (over all registers used) of the logarithms of the maximum numbers stored in the register

Other Machine models

- Turing Machines (we will define them later)
- Circuits
- Many more!

- A machine model is universal, if it can simulate any computation of a Turing machine
- RAM's are universal
 - Vice versa, Turing machines can simulate RAM's

Types of Algorithm Analysis

- Usually we will use asymptotic analysis
 - Reason: next year's computer will be faster, so constant factors don't matter (usually)
 - Understand the inherent complexity of a problem (can you multiply in linear time?)
 - Usually gives the right answer in practice
- Worst case analysis
 - The running time of an algorithm is the maximum time used over all inputs
 - On the safe side for all inputs...

Other Types of Analysis

Average case:

- Average under which distribution?
- Often the uniform distribution, but may be unrealistic

Amortized analysis:

- Sometimes after some costly preparations we can solve many problem instances cheaply
- Count the average cost of an instance (preparation costs are spread between instances)
- Often used in datastructure analysis

Asymptotic Analysis

- Different models of computation lead to different running times
 - E.g. depending on the instruction set
- Also, real computers become faster through faster processors
 - Same sequence of operations performed faster
- Therefore we generally are not interested in constant factors in the running time
 - Unless they are very bad

O, Ω, Θ

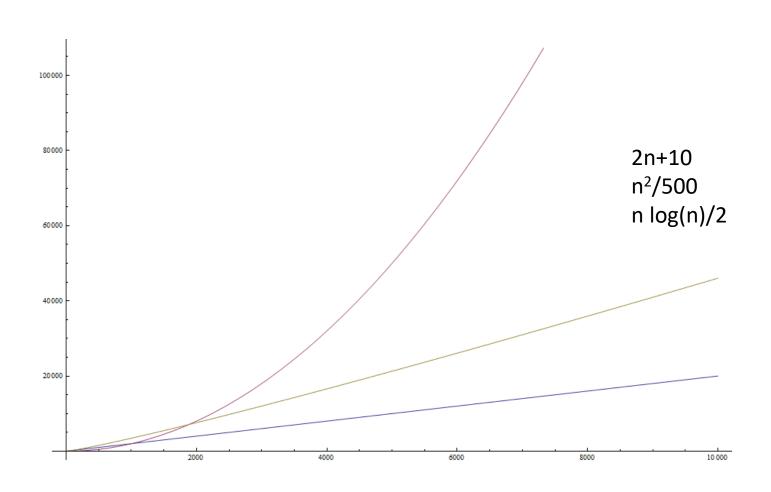
- Let f,g be two monotonically increasing functions that send N to R⁺
- f=O(g) if $\exists n_0, c \forall n>n_0$: f(n) $\leq c g(n)$
- Example: f(n)=n, $g(n)=1000n+100 \Rightarrow g(n)=O(f(n))$ - Set c=1001 and $n_0=100$
- Example:
 f(n)=n log n, g(n)=n²

O, Ω, Θ

- Let f,g be two monotonically increasing functions that send N to R⁺
- $f = \Omega(g)$ iff g = O(f)Definition by Knuth

- $f = \Theta(g)$ iff [f=O(g) and g=O(f)]
- o, ω : asymptotically smaller/larger
- E.g., $n=o(n^2)$
- But $2n^2 + 100 \text{ n} = \Theta(n^2)$

Some functions



Sorting

- Computers spend a lot of time sorting!
- Assume we have a list of numbers x₁,...,x_n from a universe U
- For simplicity assume the x_i are distinct
- The goal is to compute a permutation π such that $x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(n)}$
- Think of a deck of cards
- Often the numbers have additional information attached
 - E.g. Telephone book

InsertionSort

- An intuitive sorting algorithm
- The input is provided in A[1...n]
- Code:

end

```
for i = 2 to n,

for (k = i; k > 1 and A[k] < A[k-1]; k--)

swap A[k,k-1]

→ invariant: A[1..i] is sorted
```

- Clear: O(n²) comparisons and O(n²) swaps
- Algorithm works in place, i.e., uses linear space

Correctness

- By induction
- Base case: n=2:
 We have one conditional swap operation, hence the output is sorted
- Induction Hypothesis:
 After iteration i the elements A[1]...A[i] are sorted
- Induction Step:
 Consider Step i+1. A[1]...A[i] are sorted already.
 Inner loop starts from A[i+1] and moves it to the correct position. After this A[1]...A[i+1] are sorted.

Best Case

- In the worst case Insertion Sort takes time $\Omega(n^2)$
- If the input sequence is already sorted the algorithms takes time O(n)
- The same is true if the input is almost sorted
 - important in practice
- Algorithm is simple and fast for small n

Worst Case

- On some inputs InsertionSort takes $\Omega(n^2)$ steps
- Proof: consider a sequence that is decreasing,
 e.g., n,n-1,n-2,...,2,1
- Each element is moved from position i to position 1
- Hence the running time is at least $\sum_{i=1,...,n} i = \Omega(n^2)$

Can we do better?

 Attempt 1: Searching for the position to insert the next element is inefficient, employ binary search

Ordered search:

— Given an array A with n numbers in a sorted sequence, and a number x, find the smallest i such that A[i] >= x

• Use A[n+1]= ∞

Linear Search

- Simplest way to search
- Run through A (from 1 to n) and compare A[i] with x until A[i] >= x is found, output i

• Time: $\Theta(n)$

Can also be used to search unsorted Arrays

Binary Search

- If the array A is sorted already, we can find an item much faster!
- Assume we search for a x among A[1]<...<A[n]
- Algorithm (to be first called with l=1 and r=n):
 - BinSearch(x,A,I,r]
 - If r-l=0 test if A[l]=x, end
 - Compare A[(r-l)/2+l] with x
 - If A[(r-l)/2+l]=x output (r-l)/2+l, end
 - If A[(r-l)/2+l] > x BinSearch(x,A,l,(r-l)/2+l)
 - If A[(r-1)/2+1] < x Bin Search(x,A,(r-1)/2+1,r)

Time of Binary Search

- Define T(n) as the time/number of comparisons needed on Arrays of length n
- T(2)=1
- T(n)=T(n/2)+1
- Solution: T(n)=log(n)
- logs have base 2 usually
 - In asymptotic analysis the base of the logarithms does not matter (as long as it's constant)

Recursion

- We just described an algorithm via recursion: a procedure that calls itself
- This is often convenient but we must make sure that the recursion eventually terminates
 - Have a base case (here r=l)
 - Reduce some parameter in each call (here r-l)

Binary Insertion Sort

- Using binary search in InsertionSort reduces the number of comparisons to O(n log n)
 - The outer loop is executed n times, each inner loop now uses log n comparisons
- Unfortunately the number of swaps does not decrease:
 - To insert an element we need to shift the remaining array to the right!