Theory of Computing

Lecture 1
MAS 714

2019
Hartmut Klauck



Organization:

 |Lectures:
Mon 10:30-11:30 TR+12
Tue 10:30-12:30

e Tutorial:
Tue 11:30-12:30

* Exceptions: This week no tutorial, next week
no tutorial




Organization

* Final: 60%, Midterm: 20%, Homework: 20%

* There will be 4 sets of homework

— First homework on September 2, to be handed in
on September 10

— Each set of homework is 5%
e http://www.ntu.edu.sg/home/hklauck/MAS714.htm



Books:

* Cormen, Leiserson, Rivest, Stein:
Introduction to Algorithms

* Sipser: Introduction to the Theory of
Computation

* Arora, Barak: Computational Complexity - A
Modern Approach



Theory of Computing

ALGORITHMS
CRYPTOGRAPHY
DATA STRUCTURES COMPLEXITY
MACHINE MODEL
& QRER UNCOMPUTABLE
FORMAL LANGUAGES
UNIVERSALITY

PROOF SYSTEMS



Overview

* First Half: Efficient Algorithms
— Sorting
— Graph Algorithms
— Data Structures
— Linear Programming

* Second Half: Theory of Computing
— Computational Complexity
— Computability
— Formal Languages



Computation

* Computation: Mapping inputs to outputs in a
prescribed way, by small, easy steps

 Example: Multiplication
— Mult(a,b)=c such that a*b=c

* How to find c?
e School method



Algorithms

* An algorithm is a procedure for performing a
computation

e Algorithms consist of elementary
steps/instructions

* Elementary steps depend on the model of
computation
— Example: C++ commands

— Models Like Turing machines allow very simple
steps only



Algorithms: Example

e Gaussian Elimination
— Input: Matrix M

— Output: Triangular Matrix that is row-equivalent
to M

— Elementary operations: row operations

* swap, scale, add



Algorithms

e Algorithms are named after Al-Khwarizmi
(AbD ‘Abdallah Muhammad ibn Musa aI—KhwérizmT)

c. /80-850 ce
Persian mathematician and astronomer

* (Algebra is also named after his work)

* His works (later) brought the positional system
of numbers to the attention of Europeans



Algorithms: Example

 Addition via the school method:
— Write numbers under each other

— Add number position by position moving a ,,carry”
forward

* Elementary operations:

— Add two numbers between 0 and 9
(memorized)

— Read and Write
* Can deal with arbitrarily long numbers!



Datastructure

 The addition algorithm uses (implicitly) an
array as datastructure

— An array is a fixed length vector of cells that can
each store a number/digit

— Note that when we add x and y then x+y is at most
1 digit longer than max{x,y}

— So the result can be stored in an array of length
n+1 (where n allows to store x or y)



Multiplication

The school multiplication algorithm is an
example of a reduction

First we learn how to add n numbers with n
digits each

To multiply x and y we generate n numbers
x.- y- 10" and add them up

Reduction from Multiplication to Addition



Complexity

We usually analyze algorithms to grade the
performance

The most important (but not the only)
parameters are time and space

Time refers to the number of elementary
steps

Space refers to the storage needed during the
computation



Example: Addition

Assume we add two numbers X,y with n
decimal digits

Clearly the number of elementary steps
(adding digits etc) grows linearly with n

Space is also =~n

Typical: asymptotic analysis



Example: Multiplication

We generate n numbers with at most 2n digits,
add them

Number of steps is O(n?)
Space is O(n?)

— Easy to reduce to O(n)

Much faster algorithms exist
— (but not easy to do with pen and paper)

Question: Is multiplication harder than addition?
— Answer: we don‘t know...



Our Model of Computation

We could use Turing machines...

Will consider algorithms in a richer model, a
RAM

RAM:

— random access machine

Basically we will just use pseudocode/informal
language



RAM

e Random Access Machine

— Storage is made of registers that can hold a
number (an unlimited amount of registers is
available)

— The machine is controlled by a finite program

— Instructions are from a finite set that includes
* Fetching data from a register into a special register
* Arithmetic operations on registers
* Writing into a register
* Indirect addressing



RAM

 Random Access Machines and Turing
Machines can simulate each other

e There is a universal RAM

— Can simulate all other RAMs when given their
program
* RAM’s are very similar to actual computers

Input tape

— machine language | ]




Computation Costs

* The time cost of a RAM step involving 1 or 2
registers is the logarithm of the numbers stored

— logarithmic cost measure
— adding numbers with n bits takes time n etc.
* The time cost of a RAM program is the sum of the
time costs of its steps
— For a fixed input
e Space used is the sum (over all registers used) of

the logarithms of the maximum numbers stored
in the register



Other Machine models

Turing Machines (we will define them later)
Circuits
Many more!

A machine model is universal, if it can
simulate any computation of a Turing machine

RAM’s are universal

— Vice versa, Turing machines can simulate RAM’s



Types of Algorithm Analysis

e Usually we will use asymptotic analysis

— Reason: next year‘s computer will be faster, so
constant factors don‘t matter (usually)

— Understand the inherent complexity of a problem (can
you multiply in linear time?)

— Usually gives the right answer in practice
* Worst case analysis

— The running time of an algorithm is the maximum
time used over all inputs

— On the safe side for all inputs...



Other Types of Analysis

* Average case:
— Average under which distribution?
— Often the uniform distribution, but may be unrealistic

e Amortized analysis:

— Sometimes after some costly preparations we can
solve many problem instances cheaply

— Count the average cost of an instance (preparation
costs are spread between instances)

— Often used in datastructure analysis



Asymptotic Analysis

* Different models of computation lead to
different running times
— E.g. depending on the instruction set

e Also, real computers become faster through

faster Processors
— Same sequence of operations performed faster

 Therefore we generally are not interested in
constant factors in the running time

— Unless they are very bad



0,Q,E

Let f,g be two monotonically increasing
functions that send N to R*

f=0(g) if dngc Vn>n,: f(n) <cg(n)
Example:

f(n)=n, g(n)=1000n+100 = g(n)=0(f(n))

— Set ¢=1001 and n,=100

Example:
f(n)=n log n, g(n)=n?



0,Q,E

Let f,g be two monotonically increasing
functions that send N to R*

f=0Q(g) iff g=0(f)

— Definition by Knuth

f=06(g) iff [f=0(g) and g=0(f) ]
0, w: asymptotically smaller/larger
E.g., n=o0(n?)

But 2n2+ 100 n=@(n?)



Some functions

2n+10
n2/500
n log(n)/2




Sorting

Computers spend a lot of time sorting!

Assume we have a list of numbers x,,...,x, from a
universe U

For simplicity assume the x. are distinct

The goal is to compute a permutation 7 such that
XS Xz 0 S Xagn)

Think of a deck of cards

Often the numbers have additional information
attached

— E.g. Telephone book



InsertionSort

An intuitive sorting algorithm
The input is provided in A[1...n]
Code:

fori1=2ton,
for (k =1; k > 1 and AlK] < A[k-1]; k--)
swap Alk,k-1]

— invariant: A[1..i] is sorted
end

Clear: O(n?) comparisons and O(n?) swaps
Algorithm works in place, i.e., uses linear space



Correctness

By induction

Base case: n=2:
We have one conditional swap operation, hence
the output is sorted

Induction Hypothesis:
After iteration i the elements A[1]...A[i] are sorted

Induction Step:

Consider Step i+1. A[1]...A[i] are sorted already.
Inner loop starts from A[i+1] and moves it to the
correct position. After this A[1]...A[i+1] are
sorted.



Best Case

In the worst case Insertion Sort takes time
QA(n?)

If the input sequence is already sorted the
algorithms takes time O(n)

The same is true if the input is almost sorted

— iImportant in practice

Algorithm is simple and fast for small n



Worst Case

On some inputs InsertionSort takes QQ(n?)
steps

Proof: consider a sequence that is decreasing,
e.g., h,n-1,n-2,...,2,1

Each element is moved from position i to
position 1

Hence the running time is at least
Zi=1,...,n | = Q(nZ)



Can we do better?

Attempt 1:
Searching for the position to insert the next
element is inefficient, employ binary search

Ordered search:

— Given an array A with n numbers in a sorted

sequence, and a number x, find the smallest i such
that A[i] >=x

Use A[n+1]=00



Linear Search

Simplest way to search

Run through A (from 1 to n) and compare A[i]
with x until A[i] >= x is found, output i

Time: &(n)

Can also be used to search unsorted Arrays



Binary Search

* |fthe array A is sorted already, we can find an
item much faster!

* Assume we search for a x among A[1]<...<A[n]
e Algorithm (to be first called with I=1 and r=n):

— BinSearch(x,A,l,r]

e |f r-I=0 test if A[l]=x, end

— Compare A[(r-1)/2+1] with x

— If A[(r-1)/2+1]=x output (r-1)/2+], end

— If A[(r-1)/2+1]> x BinSearch(x,A,l,(r-1)/2+l)

— If A[(r-1)/2+1]< x Bin Search(x,A,(r-1)/2+1,r)




Time of Binary Search

Define T(n) as the time/number of comparisons
needed on Arrays of length n

T(2)=1
T(n)=T(n/2)+1

Solution: T(n)=log(n)

logs have base 2 usually

— In asymptotic analysis the base of the logarithms does
not matter (as long as it’s constant)



Recursion

 We just described an algorithm via recursion:
a procedure that calls itself

* This is often convenient but we must make
sure that the recursion eventually terminates

— Have a base case (here r=l)
— Reduce some parameter in each call (here r-l)



Binary Insertion Sort

e Using binary search in InsertionSort reduces
the number of comparisons to O(n log n)

— The outer loop is executed n times, each inner
loop now uses log n comparisons

* Unfortunately the number of swaps does not
decrease:

— To insert an element we need to shift the
remaining array to the right!



