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DFS

• Procedure:

1. For all v:

• ¼(v)=NIL, d(v)=0, f(v)=0

2. Enter s into the stack S, set TIME=1, d(s)=TIME

3. While S is not empty

a) v=peek(S)

b) Find the first neighbor w of v with d(w)=0:
– push(w,S) , ¼(w)=v, TIME=TIME+1, d(w)=TIME

c) If there is no such w: pop(S), TIME=TIME+1, f(v)=TIME



DFS

• The array d(v) holds the time we first visit a 
vertex.

• The array f(v) holds the time when all 
neighbors of v have been processed

• “discovery” and “finish”

• In particular, when d(v)=0 then v has not been 
found yet



Simple Observations

• Vertices are given d(v) numbers between
1 and 2n

• Each vertex is put on the stack once, and 
receives the f(v) number once all neighbors 
are visited

• Running time is O(n+m)



A recursive DFS

• Stacks are there to roll out recursion
• Consider the procedure in a recursive way!
• Furthermore we can start DFS from all unvisited 

vertices to traverse the whole graph, not just the 
vertices reachable from s

• We also want to label edges
– The edges in (¼(v),v) form trees: tree edges
– We can label all other edges as

• back edges
• cross edges
• forward edges



Edge classification

• Lemma: the edges (¼(v),v) form a tree
• Definition: 

– Edges going down along a path in a tree (but not tree 
edge) are forward edges

– Edges going up along a path in a tree are
back edges

– Edges across paths/tree are 
cross edges

• A vertex v is a descendant of u if there is a path of tree 
edges from u to v

• Observation: descendants are discovered after their 
“ancestors” but finish before them



Example: edge labeling

• Tree edges, Back edges, Forward edges, 
Cross edges



Recursive DFS

• DFS(G):
1. TIME=0 (global variable)
2. For all v: ¼(v)=NIL, d(v)=0, f(v)=0
3. For all v: if d(v)=0 then DFS(G,v)

• DFS(G,v)
1. TIME=TIME+1, d(v)=TIME 
2. For all neighbors w of v:

1. If d(w)=0 then (v,w) is tree edge, DFS(G,w)
2. If d(w)0 and f(w)0 then cross edge or forward edge
3. If d(w)0 and f(w)=0 then back edge

3. TIME=TIME+1, f(v)=TIME



Recursive DFS

• How to decide if forward or cross edge?

– Assume, (v,w) is an edge and f(w) is not 0

– If d(w)>d(v) then forward edge

– If d(v)>d(w) then cross edge



Application 1: Topological Sorting

• A DAG is a directed acyclic graph

– A partial order on vertices

• A topological sorting of a DAG is a numbering 
of vertices s.t. all edges go from smaller to 
larger vertices

– A total order that is consistent with the partial 
order



DAGs

• Lemma: G is a DAG iff there are no back edges

– Proof:

• If there is a back edge, then there is a cycle

• The other direction: suppose there is a cycle c

• Let u be the first vertex discovered on c

• v is u’s predecessor on c

• Then v is a descendant of u, i.e., d(v)>d(u) and f(v)<f(u)

• When edge (v,u) is processed: f(u)=0, d(v)>d(u)

• Thus (v,u) is a back edge



Topological Sorting

• Algorithm:

– Output the vertices in the reverse order of the f(v) 
as the topological sorting of G

• I.e., put the v into a list when they finish in 
DFS, so that the last finished vertex is first in 
list



Topological Sorting

• We need to prove correctness
– Certainly we provide a total ordering of vertices
– Now assume vertex i is smaller than j in the ordering
– I.e., i finished after j
– Need to show: there is no path from j to i
– Proof:

• j finished means all descendants of j are finished
• Hence i is not a descendant of j (otherwise i finishes first)
• If j is a descendant of i then a path from j to i must contain a 

back edge (but those do not exist in a DAG)
• If j is not a descendant of i then a path from j to i contains a 

cross edge, but then f(i)< f(j)



Topological Sorting

• Hence we can compute a topological sorting 
in linear time



Application 2: Strongly connected 
components

• Definition:
– A strongly connected component of a graph G is a 

maximal set of vertices V’ such that for each pair 
of vertices v,w in V’ there is a path from v to w

• Note: in undirected graphs this corresponds to 
connected components, but here we have 
one-way roads

• Strongly connected components (viewed as 
vertices) form a DAG inside a graph G



Strongly connected components

• Algorithm

– Use DFS(G) to compute finish times f(v) for all v

– Compute GT [Transposed graph: edges (u,v) 
replaced by (v,u)]

– Run DFS(GT), but in the DFS procedure go over 
vertices in order of decreasing f(v) from the first 
DFS

– Vertices in a tree generated by DFS(GT) form a 
strongly connected component



Strongly connected components

• Time: O(n+m)

• We skip the correctness proof

• Note the usefulness of the f(v) numbers
computed in the first DFS



Shortest paths in weighted graphs

• We are given a graph G (adjacency list with weights
W(u,v))

• No edge means W(u,v)=1

• We look for shortest paths from start vertex s to all 
other vertices

• Length of a path is the sum of edge weights

• Distance ±(u,v) is the minimum path length on any 
path u to v



Variants

• Single-Source Shortest-Path (SSSP):
Shortest paths from s to all v

• All-Pairs Shortest-Path (APSP):
Shortest paths between all u,v

• We will now consider SSSP

• Solved in unweighted graphs by BFS

• Convention: we don‘t allow negative weight 
cycles



Note on storing paths

• Again we store predecessors (v), starting at 
NIL

• In the end they will form a shortest path tree



Setup

• We will use estimates d(v), starting from 
d(s)=0 and d(v)=1 for all other v (Pessimism!)

• Improve estimates until tight



Relaxing an edge

• Basic Operation:

– Relax(u,v,W)

• if d(v)>d(u)+W(u,v)
then d(v):=d(u)+W(u,v);  (v):=u

• I.e., if we find a better estimate we go for it



Properties of Relaxing

• Every sequence of  relax operations satisfies: 

1. d(v) ¸ (s,v) at all time

2. Vertices with  (s,v)=1 always have d(v)=1

3. If s→ u→ v is a shortest path and  (u,v) an edge 
and d(u)=(s,u).
Relaxing (u,v) gives d(v)=(s,v)
• d(v)· d(u)+W(u,v) after relaxing

=(s,u)+W(u,v)
=(s,v)         by the minimality of partial shortest paths



Observation

• Consider a shortest path p from v1 to vk
– All subpaths p‘ of p are also shortest!
– E.g.       p‘=v4→...→ vk-34 is a shortest path

• Rough Idea: We should find shortest paths with 
fewer edges earlier
– Starting with 1 edge  (shortest edge from v)
– Caution: cannot find shortest paths strictly in order of 

number of edges, just try to find all subpaths of a 
shortest path p before p

• Reason:
– Never need to reconsider our decisions
– `Greedy Algorithm‘



Dijkstra‘s Algorithm

• Solves SSSP

• Condition: W(u,v)¸ 0 for all edges

• Idea: store vertices so that we can choose a 
vertex with minimal distance estimate

• Choose v with minimal d(v), relax all edges

• Until all v are processed

• v that has been processed will never be 
processed again



Data Structure: Priority Queue

• Store n vertices and their distance estimate 
d(v)

• Operations:
– ExtractMin: Get the vertex with minimum d(v)

– DecreaseKey(v,x): replace d(v) with a smaller value

– Initialize

– Insert(v)

– Test for empty



Dijkstra‘s Algorithm

• Initialize (v)=NIL for all v and
d(s)=0, d(v)=1 otherwise

• S=; set of vertices processed

• Insert all vertices into Q (priority queue) 

• While Q;
– v:=ExtractMin(Q)

– S:=S [ {v}

– For all neighbors u of v: relax(v,u,W) 
• relax uses DecreaseKey



Dijkstras Algorithmus



Things to do:

1. Prove correctness

2. Implement Priority Queues

3. Analyze the running time



3)  Running Time

• n ExtractMin Operations and m DecreaseKey 
Operations

– n vertices, m edges

• Their time depends on the implementation of 
the Priority Queue



2)

• There is a Priority Queue with the following 
running times:

– Amortized time of ExtractMin is O(log n), i.e. the
total time for (any) n operations is O(n  log n)

– Amortized  time of DecreaseKey is O(1), i.e. total 
time for m operations O(m)

• With this the running time of Dijkstra is
O(m + n log n)



Simple Implementation

• Store d(v) in an array

– DecreaseKey in time O(1)

– ExtractMin in time O(n)

• Total running time: O(n2) for ExtractMin and
O(m) for DecreaseKey

• This is good enough if G is given as adjacency
matrix



1) Correctness

• First some observations

1. d(v) ¸ (s,v) at all times (proof by induction)

2. Hence: vertices with (s,v)=1 always have
d(v)=1

3. Let s→ v→ u be a shortest path with final edge 
(v,u) and let d(v)=(s,v) (at some time). Relaxing 
(v,u) gives d(u)=(s,u)

4. If at any time d(v)=1 for all v2 V-S, then all 
remaining vertices are not reachable from s



Correctness

• Theorem: Dijkstra‘s Algorithm terminates 
with d(v)=(s,v) for all v.

• Proof by induction over the time a vertex is 
taken from the priority queue and put into S

– Invariant: For all v2S we have d(v)=(s,v)

– In the beginning this is true since S=;



Correctness

–Have to show that the next chosen vertex 
has d(v) =±(s,v)

–For s this is trivially true
–For vs:

• Only vertices with finite d(v) are chosen, or all 
remaining vertices are not reachable (and have 
correct d(v) )

• There must be a (shortest) path s to v
• Let p be such a path, and y the first vertex 

outside S on p, x its predecessor



Correctness

• Claim: d(y)=(s,y), when v is chosen from Q

• Then: d(v)· d(y)=(s,y)· (s,v). QED

• Proof of Claim:

– d(x)=(s,x) by induction hypothesis

– edge (x,y) has been relaxed,  so d(y)=(s,y)



Correctness

• Hence d(v) is correct for all vertices in S

• In the end S=V, all distances are correct

• Still need to show: the predecessor tree 
computed is also correct


