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Data Structure: Priority Queue

• Store (up to) n elements and their keys (keys 
are numbers)

• Operations:
– ExtractMin: Get (and remove) the element with 

minimum key
– DecreaseKey(v,x): replace key(v) with a smaller 

value x
– Initialize
– Insert(v,key(v))
– Test for emptiness



Priority Queues

• We will show how to implement a priority 
queue with time O(log n) for all operations

• This leads to total time O((n+m) log n) for the 
Dijkstra algorithm

• Slightly suboptimal : we would like
O(n log n + m)

– Much more difficult to achieve



Heaps

• We will implement a priority queue with a 
heap

• Heaps can also be used for sorting!

– Heapsort:
Insert all elements, ExtractMin until empty

• If all operations take time log n we have
sorting in time O(n log n)



Heaps

• A heap is an array of length n
– can hold at most n elements

• The elements in the array are not sorted by 
keys, but their order has the heap-property

• Namely, they can be viewed as a tree, in which 
parents are smaller than their children
– ExtractMin is easy (at the root)

– Unfortunately we need to work to maintain the
heap-property after removing the root



Heaps

• Keys in a heap are arranged as a full binary 
tree where the last level is filled from the left 
up to some point

• Example:



Heaps

• Heap property:

– Element in cell i is smaller than elements in cells 2i 
and 2i+1

• Example:
Tree                                     Array



Heaps

• Besides the array storing the keys we also 
keep a counter SIZE that tells us how many 
keys are in H

– in cells 1…SIZE



Simple Procedures for Heaps

• Initialize:

– Declare the array H of correct length n

– Set SIZE to 0

• Test for Empty:

– Check SIZE

• FindMin:

– Minimum is in H[1]

• All this in time O(1)



Simple Procedures for Heaps

• Parent(i) is b i/2c

• LeftChild(i) is 2i

• Rightchild(i) is 2i+1



Procedures for Heaps

• Suppose we remove the root, and replace it with 
the rightmost element of the heap

• Now we still have a tree, but we (probably) 
violate the heap property at some vertex i, i.e., 
H[i]>H[2i] or H[i]>H[2i+1]

• The procedure Heapify(i) will fix this
• Heapify(i) assumes that the subtrees below i are 

correct heaps, but there is a (possible) violation 
at i

• And no other violations in H (i.e., above i)



Procedures for Heaps

• Heapify(i)

– l=LeftChild(i), r=Rightchild(i)

– If l·SIZE and H[l]<H[i] Smallest=l else Smallest=i

– If r·SIZE and H[r]<H[Smallest] Smallest=r

– If Smallesti

• Swap H[i] and H[Smallest]

• Heapify(Smallest)



Heapify

• Running Time:

– A heap with SIZE=n has depth at most log n

– Running time is dominated by the number of 
recursive calls

– Each call leads to a subheap that is 1 level 
shallower

– Time O( log n)



Procedures for Heaps

• ExtractMin():

– Return H[1]

– H[1]=H[SIZE]

– SIZE=SIZE-1

– Heapify(1)

• Time is O(log n)



Procedures for Heaps

• DecreaseKey(i,key)

– If H[i]<key return error

– H[i]=key \\Now parent(i) might
violate heap property

– While i>1 and H[parent(i)]>H[i]

• Swap H[parent(i)] and H[i], i=parent(i)
\\Move the element towards the root

• Time is O(log n)



Procedures for Heaps

• Insert(key):

– SIZE=SIZE+1

– H[SIZE]=1

– DecreaseKey(SIZE,key)

• Time is O(log n)



Note for Dijkstra

• DecreaseKey(i,x) works on the vertex that is
stored in position i in the heap

• But we want to decrease the key for vertex v!

• We need to remember the position of all v in 
the heap H

• Keep an array pos[1...n]

– Whenever we move a vertex in H we need to
change pos



The single-source shortest-path problem with
negative edge weights

• Graph G, weight function W, start vertex s

• Output: a bit indicating if there is a negative 
cycle reachable from s
AND (if not) the shortest paths from s to all v



Bellman-Ford Algorithm

• Initialize: d(s)=0, (s)=s, d(v)=1, (v)=NIL for 
other v

• For i=1 to n-1:
– Relax all edges (u,v)

• For all (u,v): if d(v)>d(u)+W(u,v) then output: 
„negative cycle!“

• Remark: d(v) and (v) contain distance from s 
and predecessor in a shortest path tree



Running time

• Running time is O(nm)

– n-1 times relax all m edges



Correctness

• Assume that no cycle of negative length is reachable 
from s

• Theorem: After n-1 iterations of the for-loop we 
have d(v)=(s,v) for all v.

• Lemma: Let v0,…,vk be a shortest path from  s=v0 to 
vk. Relax edges (v0,v1)….(vk-1,vk) successively. Then 
d(vk)=(s,vk). This holds regardless of other 
relaxations performed.



Correctness

• Proof of the theorem:
– Let v denote a reachable vertex
– Let s, …,v be a shortest path with k edges
– k· n-1 can be assumed (why?)
– In every iteration all edges are relaxed
– By the lemma d(v) is correct after k· n-1 iterations

• For all unreachable vertices we have d(v)=1 at all 
times

• To show: the algorithm decides the existence of 
negative cycles correctly

• No neg. cycle present/reachable: for all edges (u,v):
– d(v)=(s,v)·(s,u)+W(u,v)=d(u)+W(u,v), pass test



Correctness

• If a negative cycle exists:

– Let v0,…,vk be  a (reachable) path with negative 
length and v0=vk

– Assume the algorithm does NOT stop with error 
message, then

• d(vi)·d(vi-1)+W(vi-1,vi) for all i=1...k

• Hence 



Correctness

• v0=vk, so

• d(vi)< 1 in the end for all reachable vertices, 
hence



The Lemma

Lemma: Let v0,…,vk be a shortest path from  s=v0 to vk. 
Relax edges (v0,v1)….(vk-1,vk) successively. Then 
d(vk)=(s,vk). This holds regardless of other 
relaxations performed.

Proof:
By induction. After relaxing (vi-1, vi) the value d(vi) is 

correct.
Base: i=0, d(v0)=d(s)=0 is correct.
Assume d(vi-1) correct. According to an earlier 

observation after relaxing (vi-1,vi) also d(vi) correct.
Once d(v) is correct, the value stays correct.

d(v) is  always an upper bound



Application of Bellman Ford

• Graph is a distributed network

– vertices are processors that can communicate via edges

• We look for distance/shortest path of vertices from s

• Computation can be performed in a distributed way, 
without

– global control

– global knowledge about the  network

• Dijkstra needs global knowledge

• Running time: n-1 phases, vertices compute (in 
parallel)


