Theory of Computing

Lecture 6

MAS 714

Hartmut Klauck

Data Structure: Priority Queue

- Store (up to) n elements and their keys (keys are numbers)
- Operations:
 - ExtractMin: Get (and remove) the element with minimum key
 - DecreaseKey(v,x): replace key(v) with a smaller value x
 - Initialize
 - Insert(v,key(v))
 - Test for emptiness

Priority Queues

- We will show how to implement a priority queue with time O(log n) for all operations
- This leads to total time O((n+m) log n) for the Dijkstra algorithm
- Slightly suboptimal : we would like
 O(n log n + m)
 - Much more difficult to achieve

- We will implement a priority queue with a heap
- Heaps can also be used for sorting!
 - Heapsort:
 Insert all elements, ExtractMin until empty
- If all operations take time log n we have sorting in time O(n log n)

- A heap is an array of length n
 - can hold at most n elements
- The elements in the array are not sorted by keys, but their order has the <u>heap-property</u>
- Namely, they can be viewed as a tree, in which parents are smaller than their children
 - ExtractMin is easy (at the root)
 - Unfortunately we need to work to maintain the heap-property after removing the root

- Keys in a heap are arranged as a full binary tree where the last level is filled from the left up to some point
- Example:

- Heap property:
 - Element in cell i is smaller than elements in cells 2i
 and 2i+1
- Example:

Tree

Array

- Besides the array storing the keys we also keep a counter SIZE that tells us how many keys are in H
 - in cells 1...SIZE

Simple Procedures for Heaps

- Initialize:
 - Declare the array H of correct length n
 - Set SIZE to 0
- Test for Empty:
 - Check SIZE
- FindMin:
 - Minimum is in H[1]
- All this in time O(1)

Simple Procedures for Heaps

- Parent(i) is | i/2 |
- LeftChild(i) is 2i
- Rightchild(i) is 2i+1

- Suppose we remove the root, and replace it with the rightmost element of the heap
- Now we still have a tree, but we (probably)
 violate the heap property at some vertex i, i.e.,
 H[i]>H[2i] or H[i]>H[2i+1]
- The procedure Heapify(i) will fix this
- Heapify(i) assumes that the subtrees below i are correct heaps, but there is a (possible) violation at i
- And no other violations in H (i.e., above i)

- Heapify(i)
 - l=LeftChild(i), r=Rightchild(i)
 - If I≤SIZE and H[I]<H[i] Smallest=I else Smallest=i
 - If r≤SIZE and H[r]<H[Smallest] Smallest=r</p>
 - If Smallest≠i
 - Swap H[i] and H[Smallest]
 - Heapify(Smallest)

Heapify

- Running Time:
 - A heap with SIZE=n has depth at most log n
 - Running time is dominated by the number of recursive calls
 - Each call leads to a subheap that is 1 level shallower
 - Time O(log n)

- ExtractMin():
 - Return H[1]
 - -H[1]=H[SIZE]
 - SIZE=SIZE-1
 - Heapify(1)

• Time is O(log n)

- DecreaseKey(i,key)
 - If H[i]<key return error</p>
 - H[i]=key \\Now parent(i) mightviolate heap property
 - While i>1 and H[parent(i)]>H[i]
 - Swap H[parent(i)] and H[i], i=parent(i)

\\Move the element towards the root

Time is O(log n)

- Insert(key):
 - SIZE=SIZE+1
 - H[SIZE]=∞
 - DecreaseKey(SIZE,key)

Time is O(log n)

Note for Dijkstra

- DecreaseKey(i,x) works on the vertex that is stored in position i in the heap
- But we want to decrease the key for vertex v!
- We need to remember the position of all v in the heap H
- Keep an array pos[1...n]
 - Whenever we move a vertex in H we need to change pos

The single-source shortest-path problem with negative edge weights

- Graph G, weight function W, start vertex s
- Output: a bit indicating if there is a negative cycle reachable from s
 AND (if not) the shortest paths from s to all v

Bellman-Ford Algorithm

- Initialize: d(s)=0, $\pi(s)=s$, $d(v)=\infty$, $\pi(v)=NIL$ for other v
- For i=1 to n-1:
 - Relax all edges (u,v)
- For all (u,v): if d(v)>d(u)+W(u,v) then output: ,,negative cycle!"

• Remark: d(v) and $\pi(v)$ contain distance from s and predecessor in a shortest path tree

Running time

- Running time is O(nm)
 - n-1 times relax all m edges

- Assume that no cycle of negative length is reachable from s
- **Theorem:** After n-1 iterations of the for-loop we have $d(v)=\delta(s,v)$ for all v.

• **Lemma:** Let $v_0,...,v_k$ be a shortest path from $s=v_0$ to v_k . Relax edges $(v_0,v_1)....(v_{k-1},v_k)$ successively. Then $d(v_k)=\delta(s,v_k)$. This holds regardless of other relaxations performed.

- Proof of the theorem:
 - Let v denote a reachable vertex
 - Let s, ...,v be a shortest path with k edges
 - $k \le n-1$ can be assumed (why?)
 - In every iteration all edges are relaxed
 - By the lemma d(v) is correct after $k \le n-1$ iterations
- For all unreachable vertices we have $d(v)=\infty$ at all times
- To show: the algorithm decides the existence of negative cycles correctly
- No neg. cycle present/reachable: for all edges (u,v):
 - $d(v)=\delta(s,v)\leq\delta(s,u)+W(u,v)=d(u)+W(u,v)$, pass test

- If a negative cycle exists:
 - Let $v_0,...,v_k$ be a (reachable) path with negative length and $v_0=v_k$
 - Assume the algorithm does NOT stop with error message, then
 - $d(v_i) \le d(v_{i-1}) + W(v_{i-1}, v_i)$ for all i=1...k
 - Hence

$$\sum_{i=1}^{k} d(v_i) \leq \sum_{i=1}^{k} \left(d(v_{i-1}) + W(v_{i-1}, V_i) \right)$$

$$\sum_{i=1}^{k} d(v_i) \leq \sum_{i=1}^{k} d(v_{i-1}) + \sum_{i=1}^{k} W(v_{i-1}, v_i)$$

• $v_0 = v_k$, so

$$\underset{i=1}{\overset{k}{\leq}} d(v_i) = \underset{i=1}{\overset{k}{\leq}} d(v_{i-1})$$

• $d(v_i) < \infty$ in the end for all reachable vertices, hence

$$\underset{i=1}{\overset{k}{\leq}} W(v_{i-1}, v_i) >_{i} 0$$

The Lemma

Lemma: Let $v_0,...,v_k$ be a shortest path from $s=v_0$ to v_k . Relax edges $(v_0,v_1)....(v_{k-1},v_k)$ successively. Then $d(v_k)=\delta(s,v_k)$. This holds regardless of other relaxations performed.

Proof:

By induction. After relaxing (v_{i-1}, v_i) the value $d(v_i)$ is correct.

Base: i=0, $d(v_0)=d(s)=0$ is correct.

Assume $d(v_{i-1})$ correct. According to an earlier observation after relaxing (v_{i-1}, v_i) also $d(v_i)$ correct.

Once d(v) is correct, the value stays correct. d(v) is always an upper bound

Application of Bellman Ford

- Graph is a distributed network
 - vertices are processors that can communicate via edges
- We look for distance/shortest path of vertices from s
- Computation can be performed in a distributed way, without
 - global control
 - global knowledge about the network
- Dijkstra needs global knowledge
- Running time: n-1 phases, vertices compute (in parallel)