Theory of Computing

Lecture 7

MAS 714

Hartmut Klauck

The single-source shortest-path problem with negative edge weights

- Graph G, weight function W, start vertex s
- Output: a bit indicating if there is a negative cycle reachable from s
 - AND (if not) the shortest paths from s to all v

Bellman-Ford Algorithm

- Initialize: d(s)=0, $\pi(s)=s$, $d(v)=\infty$, $\pi(v)=NIL$ for other v
- For i=1 to n-1:
 - Relax all edges (u,v)
- For all (u,v): if d(v)>d(u)+W(u,v) then output: ,,negative cycle!"

• Remark: d(v) and $\pi(v)$ contain distance from s and predecessor in a shortest path tree

Running time

- Running time is O(nm)
 - n-1 times relax all m edges

- Assume that no cycle of negative length is reachable from s
- **Theorem:** After n-1 iterations of the for-loop we have $d(v)=\delta(s,v)$ for all v.

• **Lemma:** Let $v_0,...,v_k$ be a shortest path from $s=v_0$ to v_k . Relax edges $(v_0,v_1)....(v_{k-1},v_k)$ successively. Then $d(v_k)=\delta(s,v_k)$. This holds regardless of other relaxations performed.

- Proof of the theorem:
 - Let v denote a reachable vertex
 - Let s, ...,v be a shortest path with k edges
 - $k \le n-1$ can be assumed (why?)
 - In every iteration all edges are relaxed
 - By the lemma d(v) is correct after $k \le n-1$ iterations
- For all unreachable vertices we have $d(v)=\infty$ at all times
- To show: the algorithm decides the existence of negative cycles correctly
- No neg. cycle present/reachable: for all edges (u,v):
 - $d(v)=\delta(s,v)\leq\delta(s,u)+W(u,v)=d(u)+W(u,v)$, pass test

- If a negative cycle exists:
 - Let $v_0,...,v_k$ be a (reachable) path with negative length and $v_0=v_k$
 - Assume the algorithm does NOT stop with error message, then
 - $d(v_i) \le d(v_{i-1}) + W(v_{i-1}, v_i)$ for all i=1...k
 - Hence

$$\sum_{i=1}^{k} d(v_i) \leq \sum_{i=1}^{k} \left(d(v_{i-1}) + W(v_{i-1}, V_i) \right)$$

$$\sum_{i=1}^{k} d(v_i) \leq \sum_{i=1}^{k} d(v_{i-1}) + \sum_{i=1}^{k} W(v_{i-1}, v_i)$$

• $V_0 = V_k$, so

$$\underset{i=1}{\overset{k}{\leq}} d(v_i) = \underset{i=1}{\overset{k}{\leq}} d(v_{i-1})$$

• $d(v_i) < \infty$ in the end for all reachable vertices, hence

$$\underset{i=1}{\overset{k}{\leq}} W(v_{i-1}, v_i) >_{i} 0$$

The Lemma

Lemma: Let $v_0,...,v_k$ be a shortest path from $s=v_0$ to v_k . Relax edges $(v_0,v_1)....(v_{k-1},v_k)$ successively. Then $d(v_k)=\delta(s,v_k)$. This holds regardless of other relaxations performed.

Proof:

By induction. After relaxing (v_{i-1}, v_i) the value $d(v_i)$ is correct.

Base: i=0, $d(v_0)=d(s)=0$ is correct.

Assume $d(v_{i-1})$ correct. According to an earlier observation after relaxing (v_{i-1}, v_i) also $d(v_i)$ correct.

Once d(v) is correct, the value stays correct. d(v) is always an upper bound

Application of Bellman Ford

- Graph is a distributed network
 - vertices are processors that can communicate via edges
- We look for distance/shortest path of vertices from s
- Computation can be performed in a distributed way, without
 - global control
 - global knowledge about the network
- Dijkstra needs global knowledge
- Running time: n-1 phases, vertices compute (in parallel)

All-pairs shortest path

- Given a graph
 - Variants:
 - directed/undirected
 - weighted/unweighted/pos./neg. weights
- Output: For all pairs of vertices u,v:
 - Distance in G (APD: All-pairs distances)
 - Shortest Paths (APSP: All-pairs shortest-path)

APSP

- APD: n² outputs, running time at least n²
- Can just use adjacency matrix
- APSP: problem: how to represent n² paths?
 - Easy to construct a graph, such that for $\Omega(n^2)$ vertex pairs the distance is $\Omega(n)$
 - Simply writing paths requires output length n³

APSP output convention

- Implicit representation of shortest paths as a successor matrix
- Successor matrix S is n by n, S[i,j]=k for the neighbor k of i, which is first on the shortest path from i to j
- Easy to compute the shortest path from i to j using S:
 - e.g. S[i,j]=k, S[k,j]=l, S[l,j]=a, S[a,j]=j

APSP: some observations

- Edge weights ≥0: use n times Dijkstra, running time: O(nm+n²log n)
 - Unweighted graphs: n times BFS for time
 O(nm+n²)
- For dense graphs $m=\Omega(n^2)$ and we get $O(n^3)$
- Can we save work?

- Input: G, directed graph with positive and negative weights, no negative cycles
- O(n³) algorithm based on *Dynamic Programming*
- Compute shortest paths (from u to v) that use only vertices 1... k

- Definition:
 - d[u,v,k]= length of the shortest path from u to v that (besides u,v) uses vertices {1,...,k} only
- d[u,v,0]=W(u,v)
 - is $=\infty$ if (u,v) is no edge
- Recursion:
 - -d[u,v,k]=minimum of
 - d[u,v,k-1]

- paths using only 1,...,k-1
- d[u,k,k-1] + d[k,v,k-1] paths also using k

- Initialize d[u,v,0]=W(u,v) for all u,v
- For k=1,...,n
 - compute d[u,v,k] for all u,v
- Total running time: O(n³)

Computing the paths: exercise

 Note that this algorithm is very simple, no fancy datastructures, so constant factors are small

Dynamic Programming

- The values d[u,v,0] are given immediately
- The values d[u,v,n] are the solution to the problem
- We can easily compute all d[u,v,k] once we know all d[u,v,k-1]
- This process of computing solutions bottom up is called dynamic programming
- Note the difference to computing top down by recursion!

Dynamic Programming

- There is a recursive solution
 - $E.g. d[u,v,k]=min\{d[u,v,k-1],d[u,k,k-1]+d[k,v,k-1]\}$
- The total number of different sub-problems is bounded
 - only n³ sub-problems d[u,v,k]
- Sub-problems have a parameter (e.g. k)
- So we compute all of them "bottom up"
- Compare this to recursion top down

Dynamic Programming

- Top down solution:
 - To compute d(u,v,n) we get T(n)=3T(n-1)+O(1)
 - Exponential time!
 - Recursion solves the same sub-problems over and over
- Dynamic programming solves each subproblem once, and stores the solution

Example Dynamic Programming

- Fibonacci numbers:
 - -F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2)
- Recursive algorithm:
 - Compute recursively like the definition
 - This needs time F(n) to compute F(n)
 - F(n) grows like 1.618ⁿ
- Dynamic programming solution:
 - F=0, G=1, For i=2...n: {H=F+G, F=G, G=H}
 - Time: O(n) additions

Another example

- Longest Common Subsequence (LCS)
- A sequence $z_1,...,z_k$ (over some alphabet) is a subsequence of $x=x_1,...,x_m$, if there are $i_1 < i_2 < \cdots < i_k$ and all $x(i_j) = z_j$
- Input: sequences x=x₁,...,x_m and y₁,....,y_n
- Output: a longest sequence Z that is a subsequence of both X,Y

LCS

- Brute force approach: enumerate all subsequences (2^m)
- Dynamic Programming idea:
- Theorem: Let $x=x_1,...,x_m$ and $y=y_1,...,y_n$, and $z=z_1,...,z_k$ be an LCS for x,y
 - 1. If $x_m = y_n$: $z_k = x_m = y_n$ and $z_1...z_{k-1}$ is LCS of $x_1,...,x_{m-1}$ and $y_1,...,y_{n-1}$
 - 2. If $x_m \neq y_n$ and $z_k \neq x_m$ then z is an LCS of $x_1, ..., x_{m-1}$ and y
 - 3. If $x_m \neq y_n$ and $z_k \neq y_n$ then z is an LCS of $y_1, ..., y_{n-1}$ and x

The recursion

- Denote x(i)=x₁,...,x_i
- c[i,j] is the LCS length of x(i) and y(j)
- Recursion:
 - c[0,j]=0 and c[i,0]=0
 - $-c[i,j]=c[i-1,j-1]+1 \text{ if } x_i=y_i \text{ and } i,j>0$
 - max{ c[i,j-1] , c[i-1,j] } otherwise
- There are only mn subproblems c[i,j] and we can compute them starting from c[0,0], row by row
 - i,j viewed as indices in a matrix

LCS: the length

- LCSLength(X[1..m], Y[1..n])
 - **for** i=0...m
 - C[i,0] = 0
 - -**for** j=0...n
 - C[0,j] = 0
 - **for** i=1...m
 - **for** j=1...n
 - if X[i] = Y[j] then C[i,j] := C[i-1,j-1] + 1
 else C[i,j] := max(C[i,j-1], C[i-1,i])

LCS: the sequence

Create an array B of arrows during the computation

```
    X[i]=Y[j]: left and up
    X[i]≠Y[j]:
    C[i,j] = C[i,j-1]: left
    C[i,j] = C[i-1,j]: up
```

- Follow the arrows starting at B[m,n]
 - − \(\sqrt{\sqrt{\text{arrows}}}\) arrows are at elements of the LCS

LCS: example

	Ø	B	A	3	A		
Ø	0	0	0	0	0	0	
	0	0	0	0	0		
A	0	0	1/			1	
B	0	1		26	- 2 _K	2	
	()			2	2	3	
				J)	ı	

Algorithm design paradigms

- Divide and Conquer
- Dynamic Programming
- Greedy
- More:
 - Randomization
 - Recursion
 - Branch and Bound
 - etc.

APSP and APD faster?

- It seems that we are still doing a lot of work twice at running times like n³ or nm for APSP
- Consider the adjacency matrix A of graph G
- For now settle for connectivity information: is v reachable from u?

- Consider A², with the standard matrix product
 - $-A^{2}[u,v] > 0$ iff there is a path of length 2 from u to v

Connectivity by Matrix Multiplication

- Set A[u,u]=1
- Now: A^t[u,v]> 0 iff there is a path of length at most t from u to v
- Compute Aⁿ⁻¹

Naive approach:
 n-1 matrix multiplications

Connectivity by Matrix Multiplication

- Assume $2^{k-1} < n < 2^k$
- Compute 2^k—th power of A
- Repeated squaring
 - Compute A, A^2 , A^4 , A^8 , A^{16} etc.
 - Finish after k multiplications
 - $-k < \log n + 1$
- Best algorithm for matrix multiplication needs time $O(n^{\gamma})$. It is known that $2 \le \gamma \le 2.3729$
- Running time is $O(n^{\gamma} \log n)$

Connectivity by Matrix Multiplication

 Problem: we can decide connectivity for all pairs, but have not solved APD or APSP!

Some results:

- 1. Can solve APD in time $O(n^{\gamma} \log n)$ for unweighted undirected graphs
- 2. APSP in time $O(n^{\gamma} \log^2 n)$ for unweighted undirected graphs via a *randomized* algorithm
- 3. APSP for directed graphs with polynomial size nonnegative weights: Approximation ratio (1+ ϵ) in time O($n^{\gamma}/\epsilon \log^3 n$)
- 4. APSP for weighted undirected graphs: Approximation ratio 3 in time O(n²)