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The single-source shortest-path problem
with negative edge weights

• Graph G, weight function W, start vertex s

• Output: a bit indicating if there is a negative 
cycle reachable from s
AND (if not) the shortest paths from s to all v



Bellman-Ford Algorithm

• Initialize: d(s)=0, (s)=s, d(v)=1, (v)=NIL for 
other v

• For i=1 to n-1:
– Relax all edges (u,v)

• For all (u,v): if d(v)>d(u)+W(u,v) then output: 
„negative cycle!“

• Remark: d(v) and (v) contain distance from s 
and predecessor in a shortest path tree



Running time

• Running time is O(nm)

– n-1 times relax all m edges



Correctness

• Assume that no cycle of negative length is reachable 
from s

• Theorem: After n-1 iterations of the for-loop we 
have d(v)=(s,v) for all v.

• Lemma: Let v0,…,vk be a shortest path from  s=v0 to 
vk. Relax edges (v0,v1)….(vk-1,vk) successively. Then 
d(vk)=(s,vk). This holds regardless of other 
relaxations performed.



Correctness

• Proof of the theorem:
– Let v denote a reachable vertex
– Let s, …,v be a shortest path with k edges
– k· n-1 can be assumed (why?)
– In every iteration all edges are relaxed
– By the lemma d(v) is correct after k· n-1 iterations

• For all unreachable vertices we have d(v)=1 at all 
times

• To show: the algorithm decides the existence of 
negative cycles correctly

• No neg. cycle present/reachable: for all edges (u,v):
– d(v)=(s,v)·(s,u)+W(u,v)=d(u)+W(u,v), pass test



Correctness

• If a negative cycle exists:

– Let v0,…,vk be  a (reachable) path with negative 
length and v0=vk

– Assume the algorithm does NOT stop with error 
message, then

• d(vi)·d(vi-1)+W(vi-1,vi) for all i=1...k

• Hence 



Correctness

• v0=vk, so

• d(vi)< 1 in the end for all reachable vertices, 
hence



The Lemma

Lemma: Let v0,…,vk be a shortest path from  s=v0 to vk. 
Relax edges (v0,v1)….(vk-1,vk) successively. Then 
d(vk)=(s,vk). This holds regardless of other 
relaxations performed.

Proof:
By induction. After relaxing (vi-1, vi) the value d(vi) is 

correct.
Base: i=0, d(v0)=d(s)=0 is correct.
Assume d(vi-1) correct. According to an earlier 

observation after relaxing (vi-1,vi) also d(vi) correct.
Once d(v) is correct, the value stays correct.

d(v) is  always an upper bound



Application of Bellman Ford

• Graph is a distributed network

– vertices are processors that can communicate via edges

• We look for distance/shortest path of vertices from s

• Computation can be performed in a distributed way, 
without

– global control

– global knowledge about the  network

• Dijkstra needs global knowledge

• Running time: n-1 phases, vertices compute (in 
parallel)



All-pairs shortest path

• Given a graph

– Variants:

• directed/undirected

• weighted/unweighted/pos./neg. weights

• Output: For all pairs of vertices u,v:

– Distance in G (APD: All-pairs distances)

– Shortest Paths (APSP: All-pairs shortest-path)



APSP

• APD: n2 outputs, running time at least n2

• Can just use adjacency matrix 

• APSP: problem: how to represent n2 paths?

– Easy to construct a graph, such that for (n2) 
vertex pairs the distance is (n) 

– Simply writing paths requires output length n3



APSP output convention

• Implicit representation of shortest paths as a 
successor matrix

• Successor matrix S is n by n,  S[i,j]=k for the 
neighbor k of i, which is first on the shortest 
path from i to j

• Easy to compute the shortest path from i to j 
using S:

– e.g. S[i,j]=k, S[k,j]=l, S[l,j]=a, S[a,j]=j



APSP: some observations

• Edge weights ≥0: use n times Dijkstra, running 
time: O(nm+n2log n)

– Unweighted graphs: n times BFS for time 
O(nm+n2)

• For dense graphs m=(n2) and we get O(n3)

• Can we save work?



Floyd-Warshall Algorithm

• Input: G, directed graph with positive and 
negative weights, no negative cycles

• O(n3) algorithm based on 
Dynamic Programming 

• Compute shortest paths (from u to  v) that use 
only vertices 1… k



Floyd-Warshall Algorithm

• Definition:
– d[u,v,k]= length of the shortest path from u to v 

that (besides u,v) uses vertices {1,…,k} only

• d[u,v,0]=W(u,v)
– is =1 if (u,v) is no edge

• Recursion:
– d[u,v,k]= minimum of

• d[u,v,k-1]            paths using only 1,…,k-1

• d[u,k,k-1] + d[k,v,k-1]       paths also using k



Floyd-Warshall Algorithm

• Initialize d[u,v,0]=W(u,v) for all u,v

• For k=1,…,n

– compute d[u,v,k] for all u,v

• Total running time: O(n3)



Floyd-Warshall Algorithm

• Computing the paths: exercise

• Note that this algorithm is very simple, no 
fancy datastructures, so constant factors are 
small



Dynamic Programming

• The values d[u,v,0] are given immediately

• The values d[u,v,n] are the solution to the
problem

• We can easily compute all d[u,v,k] once we
know all d[u,v,k-1]

• This process of computing solutions bottom
up is called dynamic programming

• Note the difference to computing top down by
recursion!



Dynamic Programming

• There is a recursive solution

– E.g. d[u,v,k]=min{d[u,v,k-1],d[u,k,k-1]+d[k,v,k-1]

• The total number of different sub-problems is 
bounded

– only n3 sub-problems d[u,v,k]

• Sub-problems have a parameter  (e.g. k)

• So we compute all of them “bottom up”

• Compare this to recursion top down



Dynamic Programming

• Top down solution:

– To compute d(u,v,n) we get T(n)=3T(n-1)+O(1)

• Exponential time!

– Recursion solves the same sub-problems over and 
over

• Dynamic programming solves each sub-
problem once, and stores the solution



Example Dynamic Programming 

• Fibonacci numbers:
– F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2)

• Recursive algorithm:
– Compute recursively like the definition

– This needs time F(n) to compute F(n)

– F(n) grows like 1.618n

• Dynamic programming solution:
– F=0, G=1, For i=2…n: {H=F+G, F=G, G=H}

– Time: O(n) additions 



Another example

• Longest Common Subsequence (LCS)

• A sequence z1,…,zk (over some alphabet) is a 
subsequence of x=x1,…,xm, if there are 
i1<i2<< ik and all x(ij)=zj

• Input: sequences x=x1,…,xm and y1,....,yn

• Output: a longest sequence Z that is a 
subsequence of both X,Y



LCS

• Brute force approach: enumerate all 
subsequences    (2m)

• Dynamic Programming idea:

• Theorem: Let x=x1,…,xm and y=y1,…,yn, and 
z=z1,…,zk be an LCS for x,y

1. If xm=yn:  zk = xm =yn and z1…zk-1 is LCS of x1,…,xm-1 and 
y1,…,yn-1

2. If xmyn and zkxm then z is an LCS of x1,…,xm-1 and y

3. If xmyn and zkyn then z is an LCS of y1,…,yn-1 and x 



The recursion

• Denote x(i)=x1,…,xi

• c[i,j] is the LCS length of x(i) and y(j)
• Recursion:

– c[0,j]=0 and c[i,0]=0
– c[i,j]=c[i-1,j-1]+1 if xi=yj and i,j>0
– max{ c[i,j-1] , c[i-1,j] } otherwise

• There are only mn subproblems c[i,j] and we can 
compute them starting from c[0,0], row by row
– i,j viewed as indices in a matrix



LCS: the length

• LCSLength(X[1..m], Y[1..n])

– for i=0...m

• C[i,0] = 0 

– for j=0...n

• C[0,j] = 0

– for i=1...m

• for j=1...n

– if X[i] = Y[j] then C[i,j] := C[i-1,j-1] + 1

else C[i,j] := max(C[i,j-1], C[i-1,j])



LCS: the sequence

• Create an array B of arrows during the 
computation

– X[i]=Y[j]:  left and up          -

– X[i]Y[j]: 

• C[i,j] = C[i,j-1] : left               ←

• C[i,j] =C[i-1,j] :  up                  "

• Follow the arrows starting at B[m,n]

–- arrows are at elements of the LCS



LCS: example



Algorithm design paradigms

• Divide and Conquer

• Dynamic Programming

• Greedy

• More:

– Randomization

– Recursion

– Branch and Bound

– etc.



APSP and APD faster?

• It seems that we are still doing a lot of work twice at
running times like n3 or nm for APSP

• Consider the adjacency matrix A of graph G

• For now settle for connectivity information: is v 
reachable from u?

• Consider A2, with the standard matrix product

– A2[u,v] > 0 iff there is a path of length 2 from u to
v



Connectivity by Matrix Multiplication

• Set A[u,u]=1

• Now: At[u,v]> 0 iff there is a path of length at
most t from u to v

• Compute An-1

• Naive approach:
n-1 matrix multiplications 



Connectivity by Matrix Multiplication

• Assume 2k-1· n· 2k

• Compute 2k–th power of A

• Repeated squaring

– Compute A, A2, A4, A8, A16 etc.

– Finish after k multiplications

– k· log n+1

• Best algorithm for matrix multiplication needs time 
O(n). It is known that 2·· 2.3729

• Running time is O(n log n)



Connectivity by Matrix Multiplication

• Problem: we can decide connectivity for all 
pairs, but have not solved APD or APSP!



Some results:

1. Can solve APD in time O(n log n) for unweighted
undirected graphs

2. APSP in time O(n log2 n) for unweighted undirected
graphs via a randomized algorithm

3. APSP for directed graphs with polynomial size
nonnegative weights:
Approximation ratio (1+) in time O(n/ log3 n)

4. APSP for weighted undirected graphs:
Approximation ratio 3 in time O(n2)


