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Seven Bridges of Königsberg

Can one take a walk that crosses each bridge exactly once? 



Seven Bridges of Königsberg

• Model as a graph

• Is there a path that traverses each edge exactly 
once?
– Original problem allows different start and end vertex

– Answer is no.



Euler Tours

• For an undirected graph G=(V,E) an Euler 
circuit is a path that traverses every edge 
exactly once, and ends at the same vertex as it 
starts

• Same definition for directed graphs

• Graph G is Eulerian if it has an Euler circuit



Euler Circuits

• Theorem: an undirected graph is Eulerian, iff all 
vertices have even degree and all vertices of 
nonzero degree are in the same connected 
component.

• Proof: Clearly the condition is necessary.
To see that it is sufficient we will give an 
algorithm that will find an Euler tour in linear 
time.

• Note: vertices of degree 0 do not need to be 
visited



Finding an Euler circuit

• Start at some vertex v1, follow any edge {vi,vi+1} until v1 is 
reached again (initial tour)
– On the way mark edges as used and vertices as visited

• At this time some edges may be unused
• Find any vertex on the tour with unused edges and start a 

path from it until a cycle is formed
• Join the new cycle with the tour
• Continue until no vertex on the tour has any unused edges
• By assumption there are no unvisited vertices with 

degree>0
• Why don’t we get stuck?



Why it works

• There are two ways to get stuck:
– Not possible to return to the starting vertex
– Cycle constructed so far as no outgoing edges to look for a 

new cycle that can be joined with the current one

• But all vertices have even degree
– We can continue on the current path until it eventually 

come back to starting vertex

• And graph is connected
– If there are no edges left from current cycle we are already 

done

• Furthermore:
– Removing a cycle leaves the Euler condition intact



Implementation

• Store the circuit as a (doubly) linked list T
– initially empty, linked forward and backward

• Augment the adjacency list A to store also pointers from 
the vertices to an occurrence in T and their degree (if 
nonzero)
– For visited vertices
– Delete a vertex if degree is 0

• Create the initial tour while traversing the graph from some 
vertex
– Delete used edges from the adjacency list and update degrees

• Continue with a vertex v with nonzero degree and find a 
cycle, and insert the cycle from v to v into T



Time 

• An Euler circuit can be found in time O(n+m)

• Note that we can decide the Euler condition 
very easily from the degree sequence if we 
know the graph is connected



Euler Paths

• A graph has an Euler path if there is a path 
that traverses all edges exactly once

– Start and end of the path need not be the same

• Theorem: A graph has an Euler path if all 
vertices except two have even degree and the 
two vertices have odd degree

– And all vertices with degree>0 connected



Proof

• Again, the condition is necessary

• Sufficient too:
– Add an extra edge connecting the two vertices

– Might have a multigraph now
• Everything here works for multigraphs 

– New graph has an Euler circuit

– Remove extra edge from circuit to get path



Hamilton Paths

• A Hamilton path in an undirected graph is a 
path that visits every vertex exactly once

• A Hamilton circuit is a circuit/cycle that visits 
every vertex exactly once

• Note: No efficient algorithms are known that 
decide if there is a Hamiltonian path in a 
graph
– And likely none exist



Minimum spanning trees

• Definition
– A spanning tree of an undirected connected graph 

is a set of edges E‘µ E:
• E‘ forms a tree

• every vertex is in at least one edge in E‘

– When the edges of G have weights, then a 
minimum spanning tree is a spanning tree with
the smallest sum of edge weights



MST

• Motivation: measure costs to establish
connections between vertices

• Basic procedure in many graph algorithms

• Problem first studied by Boruvka in 1926

• Other algorithms: Kruskal, Prim

• Inputs: adjacency list with weights



Application Example

• Traveling Salesman Problem [TSP]

• Input: matrix of edge weights and number K

• Decision: is there a path through the graph 
that visits each vertex once and has cost at 
most K?

• Problem is believed to be hard

– i.e., not solvable in polynomial time



Application Example

• Metric TSP (Traveling Salesman Problem)
– weights form a metric (symmetric, triangle inequality)

– Still believed to be hard

• Approximation algorithm:
– Find an MST T

– Replace each edge of T by two edges

– Traverse T in an Euler tour of these 2(n-1) edges

– Make shortcuts to generate a cycle that goes through all 
vertices once

• Euler tour cost is twice the MST cost, hence at most
twice the TSP cost, shortcuts cannot increase cost



MST

• Generic algorithm:

– Start with an empty set of edges

– Add edges, such that current edge set is always 
subset of a minimum spanning tree

– Edges that can be added are called safe



Generic Algorithm

• Set A=;

• As long as A is not (yet) a spanning tree add a 
safe edge e

• Output A



Safe Edges

• How can we find safe edges?

• Definition:

– A cut C=(S, V-S) is a partition of V

– A set of edges repects the cut, if no edge crosses

– An edge is light for a cut, if it is the edge with 
smallest weight that crosses the cut 

• Example: red edges respect the cut



Safe Edges

• Theorem:
Let G be an undirected, connected, weighted graph. 
A a subset of a minimum spanning tree. C=(S, V-S) a 
cut that A respects.
Then the lightest edge of C is safe.

• Proof:

– T is an MST containing A

– Suppose e is not in T (otherwise we are done)

– Construct another MST that contains e



Safe Edges

• Inserting e={u,v} into T creates a cycle p in T[{e}

• u and v are on different sides of the cut

• Another edge e‘ in T crosses the cut

• e‘ is not in A (A respects the cut)

• Remove e‘ from T (T is now disconnected into 2 
trees)

• Add e to T (the two trees reconnect into one)

• W(e)=W(e‘), so T‘ is also minimal

• Hence A[{e} subset of T ‘

• e is safe for A.



Which edges are not in a min. ST?

• Theorem:
– G a graph with weights W.

All edge weights distinct.
C a cycle in  G and e={u,v} the largest edge in C. 

– Then e is in no minimum spanning tree.
• Proof:

– Assume e is in a min. ST T
– Remove e from T
– Result is two trees (containing all vertices)
– The vertices of the two trees form a cut 
– Follow C-{e} from u to v
– Some edge e‘ crosses the cut
– T-{e}[{e‘} is a spanning tree with smaller weight T



Algorithms

• We complete the algorithm „skeleton“ in two 
ways

– Prim: A is always a tree

– Kruskal: A starts as a forest that joins into a single 
tree

• initially every vertex its own tree

• join trees until all are joined up



Data structures: Union-Find

• We need to store a set of disjoint sets with the 
following operations:
– Make-Set(v):

generate a set {v}. Name of the set is v
– Find-Set(v):

Find the name of the set that contains v
– Union(u,v):

Join the sets named u and v. Name of the new set is 
either u or v

• As with Dijkstra/priority queues the running time 
will depend on the implementation of the data 
structure



Kruskal

1. Input: graph G, weights W:E  R
2. A=;
3. For each vertex v:

a) Make-Set(v)
4. Sort edges in E (increasing) by weight
5. For all edges {u,v} (order increasing by weight):

a) a=FindSet(u), b=FindSet(v)
b) If ab then

A:=A[ {{u,v}}
Union(a,b)

6. Output A



Running time Kruskal

• We will have:

– until 3: O(n) times Time for Make-Set

– 4: O(m log n)

– 5: O(m) time Time for  Find/Union

– Total will be O(n+m log n)



Correctness

• We only have to show that all edges inserted 
are safe

– Choose a cut respected by A, which is crossed by 
the new edge e

– e has minimum weight under all edges forming no
cycle, hence e has minimum weight among all 
edges crossing the cut

– Hence e must be safe for A


