
MAS 714, Fall 2019

Tutorial 2

Problem 1 Consider an array A[1], . . . , A[n] that contains n distinct numbers in sorted order.
Describe an algorithm that finds a position i, for which A[i] = i, if such a position exists. The
algorithm should run in time O(log n). Prove correctness.

Problem 2 In the Merging Problem we are given 2 lists of n numbers each. The lists are sorted.
The desired output is the sorted list of the 2n numbers in the lists.
a) Describe an algorithm that solves the merging problem with as few comparisons as possible.
b) We now try to prove a lower bound of 2n− o(n) for the number of comparisons needed. We
model the problem with decision trees as follows: The decision tree has access to the result of any
comparison between numbers in the first and second list, i.e., there are n2 possible comparisons.
The result is (as for sorting) the permutation that sorts the list of numbers. Show that there
are 22n−o(n) permutations that must be distinguished by the decision tree. I.e., that the tree
must have that many leaves and hence depth at least 2n− o(n).

Problem 3 The diameter of an undirected tree V = (V,E) is max δ(u, v), the largest shortest
path distance among any two vertices in the tree. Describe a linear time algorithm to compute
the diameter of a tree given as an adjacency list. Analyze the running time. There is no need
to check that the input is really a tree. No vertex is marked as the root of the tree.

Problem 4 An undirected graph is bipartite, if we can partition the vertex set V into two sets
U,W such that all edges are between U and V . Describe an efficient algorithm that tests if a
given graph (as adjacency list) is bipartite. What is the running time?

Problem 5 The square of a graph G = (V,E) is the graph G2 that has the same vertices as G,
and vertices u, v are connected if and only if there is a path of length exactly 2 from u to v in G.
Describe an efficient algorithm that computes the adjacency matrix of G2 from the adjacency
matrix of G.


