
MAS 714, Fall 2019

Tutorial 3/Homework 1

This homework will be graded. Please hand the solutions in before Monday,
September 9, 11:30 am.
Solutions can be submitted either via email of in written form.

Problem 1 We are given a directed graph V = (V,E) with weights W (u, v) ∈ [0, 1]. W (u, v)
is the probability that the edge (u, v) fails. All failure probabilities are independent, i.e., the
probability that edges (u, v) and (a, b) both fail is W (u, v) · W (a, b). Describe an efficient
algorithm that, given vertices s, t in G, finds a path from s to t with least total failure probability,
i.e., a path for which the probability that any edge fails is minimal among all s, t paths.

Problem 2 We are given a graph G with vertex weights W (v) for all v ∈ V . For a vertex v ∈ V
define min(v) to be the minimum W (u) over all vertices u that are reachable from v in G, i.e.,
for which there is a path from v to u. Describe an algorithm with time complexity O(n + m)
that computes min(v) for all vertices v of G.

Problem 3 If we build a heap of n elements using n Insert operations, the time we use is
O(n log n). Show how to build a heap of n elements in time O(n).

Problem 4 A d-ary heap stores elements in an array such that their order corresponds to a
tree where each vertex (except leaves) has exactly d children (except the rightmost vertex on
the second lowest level that can have between 1 and d children). The heap property for d-ary
heaps still says that the key of a parent node must be less or equal than the keys of child nodes.
(a) Informally describe procedures for ExtractMin,DecreaseKey, and Heapify, and analyze their
running time in terms of n and d.
(b) A graph is ε-dense, if it has at least m ≥ n1+ε edges, for some constant ε > 0. Describe a
priority queue implementation, such that Dijkstra (using that priority queue) will run in time
O(m) for ε-dense graphs.

Problem 5 A graph is given as an adjacency list with edge weights, where all edge weights are
from {0, . . . , T}. Describe an algorithm that computes shortest paths from a vertex s in time
O(Tn+m).


