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1 Introduction

During the first half of the 1980’s decade two seemingly unrelated areas of computer
science came into contact: the once more awakening investigation of possible applications
for artificial neural nets and the search for efficient methods to cope with the A"P-hardness
of optimization problems. Hopfield introduced in 1982 a model of neural nets with sym-
metrically weighted connections performing an associative memory task [Ho82], which
was later [HoTa85] found to be capable of expressing hard optimization problems. The
energy function used in the earlier paper to describe the fact that stored patterns acted
like “attractors” was found to be usable both as a language to express e.g. the TRAVE-
LING SALESMAN PROBLEM (TSP), and as a definition for a network determining local
optima of the energy function automatically. This interesting feature lead to a lot of
experiments with the now so-called “Hopfield nets” (for an overview see [HKP91]). But
disappointingly Hopfield nets, though consisting of fine-grained processors, seem to be
working rather slowly, and the only available algorithm controlling their computation is
sequential: one processor updates its state at a time.

While Hopfield’s work (together with the reinvention of backpropagation) led to a
new wave of interest in neural networks, more “traditionally” oriented computer scientists
began to investigate the complexity of two approaches to optimization: approximation
and local search. An approximation algorithm tries to find a solution that is “almost
as good” as the global optimum. A local search algorithm looks for a local optimum, a
solution which cannot be improved by a slight change, a step from one feasible solution to
its (somehow defined and easily accessible) neighbor. Local search algorithms are known
to be quite good in many practical applications (for more information see [PapSt82] and
[JPaY88]), but finding local optima was shown to be computationally hard even for simple
problems like MAX CUT (for exact definitions of all optimization problems considered in
this paper see appendix A). In some cases approximation should be preferred, in others
local search.

In [JPaY88] the complexity class PLS was introduced containing those local search
problems for which every single search step takes polynomial time. This class lies so-
mewhere between the functional equivalents of P and AP, but seems to equal none of
these. So PLS-complete problems may have no efficient local search algorithm at all. We
will refer to some results on this topic later. Another reason for the investigation of local
search algorithms is the so-called “simulated annealing” technique (see [KiGV83]). This
flamboyant metaphor names local search procedures which are randomized such that one
can hope to be “shot” out of bad local optima by stochastic changes applied to solution
vectors. The probability af these changes (referred to as “temperature”) is decreased
slowly during the stochastic optimization process in order to stay in a (hopefully good)
local optimum at last.

At the same time the interest in parallel computing increased due to the progress
in hardware technology. Whereas it is improbable that AP-hard optimization problems
have fast parallel algorithms (unless NP = NC) this is not clear for approximation or
local search problems. For optimization problem with polynomially bounded optima local



search clearly takes at most polynomially many search steps. In this case a PLS problem
may even have a fast parallel algorithm. Approximations are often also computable in
NC.

Differences between ANP-hard optimization problems regarding approximation and
local search lead to complex situations. Some problems are hard for both approxima-
tion and local search (the TRAVELING SALESMAN PROBLEM cannot be approximated in
polynomial time [PapSt82] (unless P = N'P), local search versions of the TRAVELING
SALESMAN PROBLEM are PLS-complete [Pap92]). Some problems are hard to approxi-
mate and easy for local search (the INDEPENDENT SET problem cannot be approximated
in polynomial time [BeSc92] (unless P = N'P), but has an efficient parallel local search
algorithm [Lu86]). Some problems are easy to approximate, but have no efficient local
search algorithm unless PLS = P resp. P = NC (the MAX CUT problem, see section
4.2). Some problems are easy for both approximation and local search (INDEPENDENT
SET restricted to constant degree graphs).

Hopfield’s energy function can easily express both INDEPENDENT SET and MAX CuT
and therefore belongs to the first category, the real “hard” problems. This result has two
possible interpretations: One may consider such hard problems simply as intractable, or
one may think of them as very expressive programming languages where computational
hardness only reflects the power to encode problems. This second interpretation could be
sensible in the case of the Hopfield energy function since it offers both a rather comfortable
language using quadratic programming and a mechanism performing local search.

Whereas the original purpose of Hopfield nets was the solution of an associative me-
mory task, this application was soon found to be not too successful. If the right application
for Hopfield nets (assuming one exists) is combinatorial optimization, then practical con-
siderations should govern the research interest. Most practical applications of Hopfield
nets used a stochastic or simulated annealing approach. One is not really interested in
solutions having the structural property of local optimality (as in the associative memory
problem), but in “good” solutions, i.e., solutions that are at least as good as local optima.
This leads to the question whether approximation and local search may be combined in
an attempt to approximate local instead of global optima. For a heuristic approach to
optimization this is as good as determining local optima exactly. The questions arising
from these considerations are:

e Do P-hard local search problems have fast parallel algorithms that approximate
local optima?

e Do PLS-complete local search problems have polynomial time algorithms that ap-
proximate local optima?

This paper tries to investigate the complexity of local approximation, i.e., of the task
to find solutions to optimization problems with cost approximatively as good as the worst
local optimum that has nonnegative cost — or arbitrarily better. The main tool to show
that this task is hard will be a notion of reducibility. We define a reduction that preserves
approximability with respect to the worst local optimum with nonnegative cost and show



that complete problems (for classes of local search problems) under this reduction exist.
These problems have no considerably more efficient local approximation algorithms than
local optimization algorithms.

The main part of the paper is an investigation of the complexity of the Hopfield energy
function under the four approaches global optimization, global approximation, local op-
timization, and local approximation. The general Hopfield function is shown to be a very
hard problem: it is complete for the class of A"P-maximization problems, and it is com-
plete for the class of PLS-maximization problems, both via approximability preserving
reductions. This implies that no efficient algorithms exist that find or approximate local
or global optima of the Hopfield energy function (unless P = NP resp. P = PLS).

Therefore we investigate restrictions on the Hopfield energy function: restrictions on
the sign of the weights and restrictions on the size of the weights. In the case of positive
weights the complexity of global optimization collapses, but local approximation is shown
to be rather hard compared to global optimization. The case of negative weights should
also be easier than the general one (though very much harder than the case of positive
weights), but this remains a conjecture. A restriction to polynomially or unit size weights
is another possibility to decrease the complexity of the Hopfield energy function. It seems
as if the Hopfield function were usable in different strengths with different complexities
thus being a rather flexible tool for the expression of optimization problems.

We also consider approximation and local search for three graph cut problems that are
very closely related to the three versions of the Hopfield energy function with restricted
signs: a cut problem and its corresponding version of the Hopfield energy function are
equivalent regarding local resp. global optimization. MAX CUT is related to the negatively
weighted Hopfield function. MAX CUT and the MAX NP/MAX SNP problems defined
in [PapY91] have very fast parallel approximation algorithms in contrast to the negatively
weighted Hopfield function. s,#-MIN CUT is related to the positively weighted Hopfield
function as well as to the famous s,-MAX FLOW. Also a generalized MAX CUT problem
with positive and negative weights is considered, that is related to the general Hopfield
function.

The organization of this paper is as follows: section 2 presents detailed material and
definitions on approximation, local search, and the new paradigm of local approximation.
Section 3 investigates the Hopfield energy function. Section 4 investigates the graph cut
problems. Definitions of optimization problems are provided in appendix A.

These are the contributions of the paper: We define a special kind of reduction that
preserves approximability with respect to an approximation quality measure called “local
performance ratio” and exhibit complete problems under such reductions for a hierarchy
of classes containing local search problems. These complete problems are shown to be as
hard to approximate as to optimize (locally). The main part of the paper investigates the
complexity of the Hopfield energy function. The results of this section can be found in
the following table.



Max {0,1}- HOPFIELD | Positive Weights | Negative Weights | Pos./Neg. Weights
Zi<j W; 8:S;— D ; tiSi
|1|-weights Opt. RTC! NP-cpl. NP-cpl.
Global App. | n®App. NL-hard | n-App. NP-cpl. | n“-App. N'P-cpl.
|1|-weights Opt. RTC' P-cpl. P-cpl.
Local App. | n-App. € AC’ 7 n-App. ¢ AC°

| pol.-weights Opt. RTC! NP-cpl. NP-cpl.
Global App. | n*-App. NL-hard | n-App. N'P-cpl. | n®App. NP-cpl.
pol.-weights Opt. RIC' P-cpl. P-cpl.
Local App. | n*-App. L-hard ? n*-App. P-cpl.
exp.-weights Opt. P-cpl. NP-cpl. NP-cpl.
Global App. | 2"-App. NL-hard | nS-App. NP-cpl. | 2°-App. N P-cpl.
exp.-weights Opt. P-cpl. PLS-cpl. PLS-cpl.
Local App. | 2"-App. N L-hard ? 2" -App. PLS-cpl.

n denotes the number of vertices of a net, € some positive constant, and £ an arbitrarily
large positive constant that depends on the polynomial bound attached to the weights.
“Opt.” refers to the complexity of computing optima, “App.” to the complexity of
approximation. £ and AL abbreviate LOGSPACE resp. NLOGSPACE. RTC' stands
for the class of functions computable by uniform probabilistic threshold circuit families
of logarithmic depth.

In section 4 there is a an amplification result for s,-MAX FLOW and s,t-MIN CUT
(showing that they either have an approximation scheme in N'C or cannot be approximated
in NVC within any constant in the case of unbounded weights). Also a NLOGSPACE-
hardness result for approximations of s,t-MAX FLow, s, t-MIN CUT, and s,{-BLOCKING
FLow is derived. In contrast to this we have a constant quality 7C° approximation
algorithm for all MAX NP problems (including MAX CuT). Cited material is marked
explicitly or provided as “fact”.

I would like to thank Georg Schnitger for his support during the development of this
paper and especially for suggesting the general theme of approximation of local optima.



2 Definitions and Preliminaries

This section provides the necessary background for the development of a theory of local
approximation. First there is some material on sequential and parallel complexity classes
and on neural nets, afterwards information about approximation algorithms, local search,
and a new combination of both is given.

2.1 Complexity Classes and Neural Nets

We want to investigate how hard it is to solve computational problems. A basic notion
is that of a “complexity class”. We begin by defining the most important complexity
classes.

Definition 2.1 A function f:{0,1}* — {0,1} is called a “decision”.

The class P consists of all decisions computable by deterministic Turingmachines in
polynomially bounded time.

The class LOGSPACE consists of all decisions computable by deterministic Turing-
machines with logarithmically bounded worktape.

The class PSPACE consists of all decisions computable by deterministic Turingma-
chines with polynomially bounded worktape.

The classes NP, NLOGSPACE, NPSPACE consist of all decisions computable with
the same resource bounds as P resp. LOGSPACE resp. PSPACE, while allowing the
Turingmachines to be nondeterministic.

Decisions [ will be identified with the formal languages f~*(1).

The following fact is well known (see e.g. [J90]):
Fact 2.1 1. LOGSPACE CNLOGSPACE CP CNP CPSPACE = NPSPACE
2. NLOGSPACE # PSPACE

It is unknown which of these inclusions (except the one noted in 2.) are strict. An
exact comparison of these fundamental complexity classes belongs to the most important
problems in computational complexity theory. Commonly it is assumed that all these
classes are different from each other. A key concept to find problems that probably
separate two complexity classes is reducibility. We now define the most basic reductions.

Definition 2.2 A language L is said to be “polynomial time reducible” to a language M
(L <, M) if a mapping [ exists such that x € I <= f(z) € M and [ is computable by
a Turingmachine in polynomially bounded time.

A language L is said to be “LCOGSPACE reducible” to a language M (L <;o¢ M)
if @ mapping f exvists such that + € I <= f(x) € M and [ is computable by a
Turingmachine with logarithmically bounded tape.

A language L is said to be “hard” for a class of problems K with respect to some
reduction R if all problems in K are R-reducible to L. L is called “complete” for K with
respect to some reduction R if L is hard for K via R and L is a member of K.



The following fact illustrates the way reductions are used (see [J90]):

Fact 2.2 1. Polynomial time reductions are transitive.

IS

. LOGSPACE reductions are transitive.

3. If a problem that is N'P-hard via polynomial time reductions is in P, then P = NP.

=

. If a problem that is P-hard via LOGSPACE reductions is in LOGSPACE, then
LOGSPACE =P.

Since we are interested in weak versions of hard problems complexity classes for parallel
computations are important. We choose the most common ones based on Boolean circuits.

Definition 2.3 A “Boolcan circuit” on a basis Q is a 5-tuple (V, Iy, ,(), where I (the
“input gates™) is the set of sources of a directed acyclic graph (VUI, E). V consists of the
“internal gates”, y € V is the “output gate” of the circuit. If v € V has indegree r, then
((v) is a function w from {0,1}" to {0,1}, the “gate function” computed by v. w must
be a member of Q, which is a set of functions {0,1}" — {0,1} for all natural numbers r.
The function computed by the circuit on an input x € {0,131 is defined in an obvious
recursive manner.

A circuil has “fan-in” ¢ if all its gates have indegree at most ¢c. The “size” of a circuit
is the cardinality of V' U I, the “depth” is the length of a longest path from an input gate
1 € [ to the oulput gate y.

The size of [ is called the “input length”. A single circuit has fixed input length and
thus cannot compute functions on {0, 1}*.

Definition 2.4 A “family of circuits” is a sequence (C,)nen of Boolean circuits, where
circuit C, has input length n. For a “uniform” family of circuits a standard representation
of the circuit C,, must be computable (given n) by a Turingmachine with worktape bounded
logarithmically in the size of C,.

The size and the depth of a circutt family are functions of n determining the size
resp. the depth of each circuit C,, of the family.

A circuil family is said to have constant fan-in if some constant ¢ exvists that bounds
the fan-in of every C',,. Otherwise the circuit family is said to have unbounded fan-in.

Circuit families that are nonuniform are able to compute any function on {0,1}*,
because every function restricted to {0,1}" is computable by a single circuit. Uniform
circuit families on the other hand are not more powerful than Turingmachines.

We now define the classes of problems that are solvable by most common theoretical
models of fast and efficient parallel computers.

Definition 2.5 The class NC* consists of all decisions computable by uniform fan-in 2
circuil families of size O(p(n)) and depth O((log n)*) for a polynomial p and an integer
constant k> 1.



The class AC* consists of all decisions computable by uniform unbounded fan-in circuit
families of size O(p(n)) and depth O((logn)*) for a polynomial p an a integer constant
k> 0. The basis of AC* circuits is restricted to AND, OR, and NOT-functions.

NC denotes the union of all NC*, AC the union of all AC*.

The class NC is called the class of “massively parallelizable problems”. It can be
defined in terms of circuits, computer networks, or PRAMS (see [KarRa90]), and is the-
refore robust. Note that AMC® has not been defined because constant fan-in circuits of
sublogarithmic depth cannot use all of their input. The following fact is discussed in

[J90].
Fact 2.3 1. NC = AC
2. NC' C LOGSPACE CNLOGSPACE C ACH

Another important tool in algorithm design is randomization.

Definition 2.6 A circuit that has additionally to its normal inputs m further inputls
cach of which takes the values 0 and 1 independently with probability 1/2 is called a
“probabilistic circuit”. We say that a probabilistic circuit C' performs a “randomized
separation” of a decision f(x) if the random variable C(x) being the output of C on x
fulfills

prob[C(x) =0|f(z) =0l =1 A prob|C(z) =1|f(z) =1] > 1/2

for the described probability distribution on the new input variables. The definition s
cxtended to circuit families by demanding that every circuit of the family performs a
randomized separation.

A circuil complexity class that is named beginning with R (e.g. RNC') contains those
decisions for which a randomized separation can be performed by a uniform circuit family
with the same restrictions as ils deterministic counterpart.

In 1943 McCulloch and Pitts published [McPi43] a mathematical model of the activity
of single neurons. This model is based on threshold-functions. We will consider threshold-
functions as gate functions of unbounded fan-in circuits thus generalizing the classical
circuit model. Other gate-functions used in neural networks are not considered.

Definition 2.7 A decision f : {0,1}" — {0,1} is called a (linear) threshold function if

real numbers wy, ..., w,,t exist such that f =0,(wy,... w,,t), where

1 if Yrwiz; >t
On(wr,., wn, 1) (2) = { 0 otherwise.

A threshold circuit is an unbounded fan-in circuit whose basis is the set of all threshold-
functions. The classes TC* contain those functions computable by uniform polynomial
size and O((logn)*) depth threshold circuit families, where k > 0 is an integer constant.

TE6 =\UFTE:.



It is important that every threshold function can be written with integer weights of
size (n + 1)("*D/2/97 (see [MuTl]). Another interesting fact is that (even exponential)
weights have only small power: Replacing the threshold gates of a circuit by MAJORITY-
gates (and thus by threshold gates with unit sized weights) costs a polynomial factor in
size and only one additional layer in depth ([Gol92]). The first part of the following fact
is obvious since AND, OR, NOT are threshold functions, and any threshold function can
be evaluated by a NC' circuit (see [Par94]).

Fact 2.4 1. Let k> 0. Then: ACF CTCF C NCF' C ACHH!.
2. AC° CTC° CNC' C LOGSPACE C NLOGSPACE C AC* CTC' C--- C NC.
3 NC=AC=TCCPCNPCPSPACE.

The only class in this hierarchy that is known to be strictly separated from its succes-
sors is AC®, by the functions PARITY and MAJORITY (see [J90]), which lie in 7C° Of
course also NLOGSPACE # PSPACE is well known.

We will use the convention to say that a function f: {0,1}* — {0,1}* is in “functional
K” for a complexity class K if the decisions f; are in K, where fi(z) = 1 iff f(a) has at
least 7 outputs and the ith of these outputs is 1, and if the language consisting of all pairs
(x,|f(2)]) is in K. Members of functional P will be called “computable in polynomial
time”.

Threshold circuits have been proved to be astonishingly powerful. The following results

can be found in [SBKH93] and [SRo94].

Fact 2.5 The following problems are computable in functional TC°: ITERATED SUM
(of n numbers with n bits), MULTIPLICATION (of 2 numbers with n bits), SORTING (of n
numbers with n bits), MATRIX MULTIPLICATION (of 2 n X n-matrices with n-bit integers).
This implies ([Pan85]) that DETERMINANT (of a n X n-matriz with n-bit integers) can be
computed in functional TC".

The neural networks described so far and those used in learning algorithms like back-
propagation (see [HKP91]) are acyclic. General recurrent networks have not been investi-
gated as thoroughly (see [Par94]). The most well-known type of recurrent neural network

is the Hopfield net (see [Ho82]).

Definition 2.8 A “Hopfield net” is a tuple (V, E, (), where V is the set of neurons, I+
contains their connections, (V, ) forms an undirected graph (without self-loops), and ( is
a mapping assigning integer weights to edges and thresholds to vertices.

At the beginning of a computation of a Hopfield net a “state” s; € {0,1} is assigned
to every neuron v;. Then some neuron takes the states of ils neighbors v; as inputs
and computes the threshold function determined by the threshold ((v;) and the weights
U(vi,v;). The neuron changes its state when the output of this computation is different
from its state. The goal of this process is to reach a stable state of the net, i.e., where no
neuron will change its state.

As we will see later, reaching a stable state in a Hopfield net is the same as finding a
local optimum of a suitably defined energy function.



2.2 Optimization Problems and Approximation Algorithms

Optimization problems make up a large and important part of the problems known to be
NP-complete (see [GJT9]) and thus commonly believed to be intractable by computers.
But the traditional theory of reductions and complete problems is not perfectly suited
to optimization problems for two reasons: first optimization problems are not decision
problems and are normally placed in complexity classes by introducing some bound on the
objective function. Secondly classical reductions do not preserve approximability. There
are many approximation degrees among N P-hard optimization problems (see [Ka92] for
an overview). Now we define a general framework for NP-optimization problems.

Definition 2.9 A NP-mazimization problem L = (P,C) is a function optpc(x) =
max{C(s,z)|P(s,2)}, where C : {0,1}* x {0,1}* — ZZ is the “objective” (or “cost”)
Junction and P : {0,1}* x {0,1}* — {0,1} is the “feasibility predicate”. P and C' must
be computable in polynomial time. x will be referred to as an “instance™ of L, s as a
“feasible solution” to x. Addilionally we demand that optpc(x) > 0 for all x, that |s| is
polynomially bounded in |x| for all feasible s, and that it is possible lo construct a feasible

solution of nonnegative cost to any x in polynomial time.
NP-minimization problems are defined analogously.

Since probably no efficient algorithms for AN"P-hard problems exist, one is interested
in algorithms for hard optimization problems that find “good” solutions. An algorithm
which produces a solution with cost near the optimum is called an “approximation algo-
rithm”. The quality of an approximation algorithm is commonly measured either with the
“relative error” or the “performance ratio”. We choose the latter to be concordant with
the definitions we will make for local approximation algorithms. These will be allowed to
give solutions arbitrarily better than (local) optima thus making relative errors useless.

Definition 2.10 Let L = (P,C) be some N'P-optimization problem. The “performance
ratio” of a solution s to some instance v of L with global optimum C(s,p(2), ) is:

Ri(s, ) = { C(sopt(2),2)/C(s,2)  for mazimization problems

C(s,2)/C(sopt(x),2)  for minimization problems

if C(s,z) >0 and C(sop(x),z) > 0. If C(s,2) <0 or C(sope(x),2) =0, then Rp(s,x) is
defined as |C(s,2)| + C(sop(2), x) + 1.

Let A be an algorithm that produces some feasible solution s(x) given an instance x
of L. Then A is called a polynomial time p-approzimation algorithm for L (for a function
plz]) > 1) if Rp(sa(z),z) < p(|z|) for all instances @ of L, and if A runs in polynomial
time (we say “A approximates L within p”).

A family of algorithms A, for every constant p > 1 is called a “polynomial lime
approzimation scheme” (PTAS) for L if each A, is a p-approzimation algorithm for L,
and if the running time of every algorithm A, is bounded by a polynomial in the length

10



of its input, where 1/(p — 1) may appear in an exponent of the time bound. If p does
not appear in an exponent of the time bound, then A is called a “fully polynomial time
approzimation scheme” (FPTAS).

An analogous definition can be made for NC p-approzimation algorithms and a NCAS.

NP-hard optimization problems can be distinguished by their approximability. There
are problems which have a FPTAS or a PTAS, others are approximable within a constant
but have no PTAS, and there are problems that cannot be approximated within a constant
in polynomial time (assuming P # NP).

An especially interesting class of problems was introduced by Papadimitriou and Yan-
nakakis in [PapY91]. They characterized a class of AP-maximization problems with
purely syntactical means based on a syntactical characterization of AP by Fagin [Fa74].
Their classes MAX NP and MAX SNP contain only problems that can be approximated
within a constant in polynomial time, but problems hard for these classes have no PTAS
(unless P=NP). More about MAX (S)NP in section 4.2.

To show that an optimization problem is hard to approximate one has to create a
“gap” in its cost function, i.e., express some hard decision problem such that the cost of
an optimum is at most W if the decision is negative, and larger than ¢W if the decision
is positive (or conversely). Then a sufficiently good approximation (performance ratio ¢)
allows to solve the decision problem and is thus shown to be hard.

Another important way to prove that a problem is hard to approximate is to use re-
ductions. But polynomial time reductions are too weak for this: they are defined among
language problems and do not take the approximability of optimization problems into
account (these are turned into language problems). So a stronger type of reduction is
needed, namely a mapping that preserves approximability. Then it is possible to create
a gap for one problem and transfer this gap to other problems by reductions. Several
attempts have been made to find a good notion for such a reduction. Performance ratio
preserving reductions were introduced in [Sim90]. We choose a similar reduction defined
in [Ka92] which is especially suited to reductions between problems that cannot be appro-
ximated within a constant. For such problems performance ratios must be measured as
functions of the input size. The so-called “S-reductions” consider the Size amplification
of the mapping among two optimization problems carefully.

Definition 2.11 Let L, M be two N'P-optimization problems. L “S-reduces with size
amplification a(n)” to M if a(n) is a monotone increasing positive function, and if there
are two polynomial time computable functions f,qg such that

1. [ maps instances of L to instances of M. g maps pairs (solution to f(z), x) to
solutions to wx.

S

. For every instance x of L and every solution s to f(x) the following holds:
Rylg(s,2),2) = O(Ba(s, [(2))).
3. For every instance x of L: |f(z)| < a(|z]).

11



The following two facts are implicit in [Ka92].

Fact 2.6 1. S-reductions are transitive.

2. If L, M are both maximization (or both minimization) problems and L <s M with
size amplification a(n), and if there is a polynomial time p-approximation algorithm
for M, where p(n) is a monotone increasing function, then there is a polynomial
O(p(a(n)))-approzimation algorithm for L.

Fact 2.7 Problems complete (via S-reductions) for all N'P-mazimization (or minimiza-
tion) problems with polynomially bounded optima cannot be approximated within n in
polynomial time for some constant ¢ > 0.

Problems complete (via S-reductions) for all N'P-mazimization (or minimization) pro-
blems cannot be approximated within 2" in polynomial time for some constant ¢ > 0.

A few problems with their approximation degree (see [Ka92]).

Problem Approximation

MAX 2-SAT MAX SNP-complete

Max Cut MAX SNP-complete

INDEPENDENT SET no pol. time n-app.

LONGEST PATH/FORBIDDEN PAIRS | cpl. for pol. bounded NP-max. problems
Max CirculT OUTPUT cpl. for N'P-max. problems

2.3 Local Search

Another approach to find “good” solutions for NP-hard optimization problems is local
search. Some polynomial time computable neighborhood structure is defined on the space
of feasible solutions and one looks for a solution which has no neighbor that is better
than itself. If all optima have polynomially bounded cost this yields a polynomial time
algorithm, because every local search step produces a strictly improved solution. If the
cost function is unbounded, local search can take exponential time, however.

Of course one can easily define instances of NP-hard optimization problems where
local search does not necessarily find a global optimum. Which local optimum is found
depends on the initial solution from which local search starts (which is usually chosen
randomly) and the rule that determines which one of the (possibly many) improving
local changes is chosen. For some problems (e.g. MAX CUT) local optima approximate
the global optimum in the sense of the previous section, but for many problems this is
not true. Nevertheless local search has become one of the most popular approaches to
NP-hard optimization and finds good solutions in many practical situations (e.g. the
Lin-Kernighan algorithm [LiKeT73] for the TSP).

A question raised in [JPaY88] is how much time local search needs. There local search
problems were examined for which every single search step takes polynomial time. These
problems form the class PLS. Since the cost function is unbounded, the problems may
have exponential optima and local search can take exponential time. Later (in [SchY91])
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several P- and PLS-completeness results were proved for seemingly easy problems like
MAaX CuT with the neighborhood that allows to change the side of one vertex in one step
(P- or PLS-completeness depends on the size of weights).

A related question is whether local search can be parallelized. For the (non-approxi-
mable) unweighted INDEPENDENT SET problem an efficient (NC) parallel algorithm is
known, but the problem is monotone and a parallel greedy approach is possible (see
[Lu86]). For other simple (and unweighted) problems P-completeness results exclude an
cfficient parallel algorithm (unless P = NC). This is one of the major motivations for the
consideration of algorithms that approximate local optima.

We now define local search problems in the same way as in [JPaY88].

Definition 2.12 An N'P-optimization problem L = (P,C') together with a neighborhood
structure N(s,x) that maps a solution and an instance to a set of neighboring solutions is
called a PLS problem (for “polynomial local search”), if three polynomial time algorithms
A;, Br, and Cy, exist such that:

1. Ay, produces (given an instance x of L) some feasible solulion to x with nonnegalive
cost that can be taken as a starting point for local search.

NS

By, decides (given a string s and an instance x) whether s is a feasible solution to x
and computes (if s is feasible) the cost C(s,x).

3. Cr has two possible outpuls given an instance x and a solulion s to x: if s is a
local optimum of x then Cy, reports this fact and stops, otherwise Cy, produces some
strictly better solution s' out of N(s,x).

If the three algorithms are computable in the functional equivalent of a complexity class K.,
then L belongs to a class we will call CLS. If the cost function is polynomially bounded
the class will be called KLSP.

The three algorithms allow the (obvious) design of a local search algorithm that takes
polynomial time (resp. has the complexity of K) for every step. But this algorithm may
have to do hard work [PapSY90]:

Fact 2.8 There is a PLS problem L, which has a PSPACE-complete standard algorithm
problem, i.c., finding the solution thal the standard algorithm induced by Ay, By, and Cy,
will output solves a PSPACE-complete problem.

Normally one is not interested in a special local optimum, but wants to find some local
optimum of a PLS problem. To see that this task is possibly casier than the standard
algorithm problem the class PLS can be compared to classes of search problems.

Definition 2.13 A “search problem” is a relation R C {0,1}* x {0,1}*. An algorithm
“solves” a search problem R if, when given an x € {0,1}*, it either returns an y such that
(x,y) € R or (correctly) reports that such a y does not exist.

The class Ps contains those search problems that can be solved in polynomial time.
The class N'Ps contains those search problems that can be solved by nondeterministic
polynomially time bounded Turingmachines.
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The following is shown in [JPaY88].
Fact 2.9 [ P CPs=PLS” CPLSC NPs.
2. If a PLS-problem solves a N'P-hard problem, then NP=Co-N"P.

Though PLS lies somewhere between Ps and APs it is rather improbable that PLS
equals one of these. Equivalence to N'Ps would imply NP=Co-NP (which is very im-
probable). Equivalence to Ps is not known to have such drastical consequences. But a
polynomial time algorithm for all of PLS would have to be a very sophisticated general
approach and would e.g. provide a new proof that LINEAR PROGRAMMING has a polyno-
mial time algorithm (LINEAR PROGRAMMING with the simplex neighborhood is a PLS
problem for which local optimality implies global optimality).

For the purpose of investigating which PLS-problems are hard a special kind of re-
duction that preserves local optimality was defined in [JPaY88].

Definition 2.14 A PLS problem L is “PLS-reducible” to a problem M (L <prs M),

if there are polynomial time computable functions [ and g such that

1. [ maps instances of L to instances of M,

2. g maps pairs (solution to f(z), x) to solutions to x,

3. for all instances x of L: if s is a local optimum of f(x), then g(s,x) is a local

opltimum of x.

If [ and g are computable in functional LOGSPACE, then the reduction is called a “LLS -
reduction”.

This notion of reducibility makes sense:

Fact 2.10 1. PLS- and LLS-reductions are transitive.

2. If L <prs M then a polynomial algorithm that finds local optima for M induces a
polynomial algorithm that finds local optima for L.

3. If L <grs M then a NC algorithm that finds local optima for M induces a NC
algorithm that finds local optima for L.

An important aspect of local search problems is the neighborhood. A “larger” neigh-
borhood structure can make local search harder, but may yield better local optima
(e.g. the Lin-Kernighan neighborhood for the TSP compared to a neighborhood that
allows only to remove two edges and insert two other edges). We are mostly interested in
problems having simple neighborhoods.

Definition 2.15 If a local search problem L allows all of {0,1}" as solutions to the
instances with solution length n, then the neighborhood structure where for a solution s
exactly those strings in Hamming distance k from s are neighbors is called the “k-flip
neighborhood”.

14



The following fact is easy to infer from [JPaY88].

Fact 2.11 For all PLS problems L = (P,C, N) there is a LLS-reduction to a problem
M = (P',C',N"), such that P’ is trivial, i.e., all strings of suitable length are soluti-
ons, and N' is the 1-flip neighborhood. Moreover, polynomially bounded optima keep this
property.

The result can even be strengthened regarding the complexity of the cost function.

Theorem 2.12 1. Unbounded weight MAX CUT is in TC'LS.
2. Unweighted MAX CUT is in TCOLS?"'.
3. Unbounded weight MAX CUT is PLS-complete via PLS -reductions.

4. Unweighted MAX CUT is PLSP -complete via LLS -reductions.

ProOOF: The first two statements hold because all strings of suitable length are feasible
solutions (making feasibility trivial), and computing the cost of a cut as well as testing
whether a solution is locally optimal is possible in functional 7C° for MAX CUT regardless
of the size of the weights: a string of length n over {0,1} codes a cut by determining the
side of every vertex as 0 or 1. For computing the cost of a given cut the weights of
external edges have to be found (which is possible in functional AC®) and have to be
summed (which is possible in functional 7C° due to fact 2.5). The algorithms A, B, and
C from definition 2.12 are easy to derive from this. Thus the unweighted problem is in
T7C°LSP | the unbounded weight problem in 7C°LS.

The third statement is proved in [SchY91] as well as the key result leading to the
fourth statement. A PLS?" problem can be reduced to unweighted Max CUT, because
its standard algorithm can be implemented on a polynomial size Boolean circuit, and this
circuit can be evaluated by finding local optima for unweighted Max CUT.

It was shown in [SchY91] that the (P-complete [J90]) CIRCUIT VALUE PROBLEM can
be solved by finding local optima for the unweighted MAX CUT problem with the 1-flip
neighborhood. The MAX CuT instances allow to read off the output(s) of a Boolean
circuit directly from the unique locally optimal solution vector.

An instance z of a PLSP problem L can be mapped to a circuit computing the
outputs of the standard local search algorithm of L on @ (the circuit can be constructed
in LOGSPACE from the Turingmachines of Ay, By, and Cr,). This circuit can be mapped
in functional LOGSPACE to an unweighted MAX CUT instance as shown in [SchY91].
The outputs of the circuit can be read off from a locally optimal solution to the MAX
CuT instance. This defines the two mappings of a LLS reduction. a

The problem FLIP is the originally used generic PLS-complete problem ([JPaY88]):
given a size n circuit with p inputs and ¢ outputs, find an input assignment such that the
natural number encoded by the outputs of the circuit is locally maximal over the 1-flip
neighborhood. If the optimum is polynomially bounded (i.e., a size n circuit has O(log n)
outputs) we will call the problem FLIP;,, (or more exactly FLIP;.;,, with k-logn outputs).

15



FL1P is the local optimization version of MAX CIRCUIT OUTPUT. Generally the circuit
must consist of fan-in 2 and fan-out 2 AND/OR gates and of NOT gates. If the depth is
restricted to log®n, then the problem is called NC*-FLIP resp. NC°-FLIP,,,.

Theorem 2.13 1. NC'-FLip,, is PLS" -complete via LLS-reductions.

2. NC*-FLIP is PLS-complete via PLS-reductions.

PROOF: It is easy to see that /\/’Cl—FLIPIOg is in PLSP and NC'-Frip in PLS. Now
to the hardness results. Theorem 2.12 implies that unweighted MaAX CUT is PLS?-
complete via LLS-reductions. The LLS-reduction from MAX CUT to J\/’Cl—FLIPgog con-
sists first of a mapping f from a graph G to a circuit C' computing the cost of a cut in G
(given an input coding this cut). Clearly i has the same locally optimal solutions as C'.
The reduction consists of the mapping f and a mapping ¢ defined by g(s,z) = s.

The circuit C' can be a NC' circuit, because the cost of the cut can be computed
by a layer determining the weights of external edges, and a circuit summing these (in
functional N'C' due to facts 2.5/2.4). The cost function is polynomially bounded, and so
(' is an instance of ./\/Cl—FLIPlog. (' can be constructed in LOGSPACE due to fact 2.5,
leading to a LLS-reduction.

PLS-completeness was proved for unbounded weight MAX CuT in [SchY91]. The
same argument as above yields a PLS-reduction to N'C'-FLIP, O
This subsection concludes with a list of completeness results ([SchY91]/[Pap92]):

Unweighted or polynomial weights; | NC'-FLIPy,,

PLSP -complete Max Cut
MAX 2-SAT

Unbounded weights; NC'-FLIp

PLS-complete Max Cut

MAX 2-SAT
TSP, Lin-Kernighan or k-change

2.4 Approximation of Local Optima

In practical applications local search is often associated with some probabilistic approach.
An initial solution is chosen randomly and the search for a local optimum begins (im-
proving neighbors may also be chosen randomly). To avoid being trapped in a bad local
optimum this process can be repeated some times. Another variant is the simulated an-
nealing approach that allows search steps that worsen the solution, but decreases their
probability with time thus “annealing” the “temperature” of the stochastic optimization
process. These methods often yield quite good solutions. It is obvious that it makes no
difference if the obtained solution is really locally optimal or if it is as good as a local
optimum-—one is not interested in the structural property of local optimality but only
in a heuristic for “good” solutions. Fast parallel approximation of local optima would

be a desirable improvement to the exact solution of PLS?"-hard local search problems.
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Note that simulated annealing algorithms also solve their corresponding local search pro-
blem. The interest in parallel computation and the completeness results of the previous
subsection raise the following questions:

e May local optima of interesting PLS"'-complete problems be approximated by fast
parallel algorithms (i.e., in functional NC)?

e May local optima of interesting PLS-complete problems be approximated in poly-
nomial time?

In order to create a general framework for these problems the following definition is helpful.

Definition 2.16 Let L = (P,C,N) be a PLS problem. The “local performance ratio” of
a solution s to an instance x of L with “worst” nonnegative local optimum C(syp(x)) is
in the case of mazximization

1 if C(s,a) > Csepe(2), 2)
R (5,2) = { Cloon(),2)/C(s,2) 70< o) < Blomiana)
Cloela),2) 4 (o) + 1 if C(5,2) <0 < Clsom(a), )

and in the case of minimization

1 if 0 < 013 3) < C(8ept(a); @)
RYe(s,z) =< Cls,2)/C(sopi(),2)  if Cs,2) > Csope(T), ) >0
C(s,a)+1 if C(s,2) > C(sepe(x),2) =0

Let A be an algorithm that produces some feasible solution s 4(x) given an instance x. A is
called a polynomial time [N'C] local p-approzimation algorithm for a function p(|z|) > 1
if Ri(sa(z),x) < p(|z]) for all instances x, and A can be implemented on a uniform
polynomial size [and polylogarithmic depth] circuil family.

A family of algorithms A, for every constant p > 1 is called a polynomial time [NC]
local approximation scheme, PTLAS [NCLAS], if each A, is a p-approzimation algorithm
and these algorithms are implementable on unifom polynomial size [and polylogarithmic
depth] circuit families, where the bounds depend on 1/(p — 1) and the input length.

Other definitions for local approximation would be possible, for instance demanding
from an approximating solution to have cost really near the cost of a local optimum, or to
be near a local optimum regarding some distance measure on solution vectors. But since
we are interested in good optimization heuristics we chose this notion of “being almost
as good as (or even better than)” a local optimum. We are interested either in designing
fast local approximation algorithms, or in proofs that such algorithms do not exist. For
the latter purpose reductions will be useful again. This time we need a very special kind
of reduction—one that preserves approximability with respect to local optima.

Definition 2.17 A local performance ratio preserving reduction (LPR-reduction) among
PLS problems L and M is defined as follows: L is K-LPR-reducible to M (L <},
M ) with size amplification a(n) for a monotone increasing positive function a(n), if two
functions f,q computable in functional K exist such thal
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[ maps instances of L to instances of M,

g maps pairs (solution to f(zx), x) to solutions to x,

. Jor all instances x of L and solutions s to f(x): R¥(g(s,x),z) = O(RYf (s, f(2))),
(@) < al]z]).

Theorem 2.14 1. K-LPR-reductions are transitive for K = LOGSPACE, K = NC*,

E=NC E=P.

. f two PLS problems L and M fulfill L <NSp M with size amplification a(n), and

M has a NC local p-approzimation algorithm for a monotone increasing function
p, then L has a NC local O(p(a(n)))-approzimation algorithm.

If two PLS problems L and M fulfill L <7 pp M with size amplification a(n) and M
has a polynomial time local p-approxzimation algorithm for a monotone increasing
Junction p, then L has a polynomial time local O(p(a(n)))-approximation algorithm.

Proor:

1.

S}

Assume L <ppr M <ppr N with functions fi,g1,a1 and f5,¢s,as for the first
resp. second reduction. Then f = f; o f; maps an instance of L to an instance of
N. g2 maps a solution s to f(z) and the instance fi(2) of M to a solution to fi(x),
g1 maps this solution and instance & to a solution to x. This defines a mapping ¢
that produces a solution with local performance ratio

RE(g(s,2),2) = Ri%(g1(92(s, [i(w)), @), )

( Ioc(gz(ﬁafl(l))afl( )
Ry (s, f2(f1(2))))

= ( 1“(8,/(1 ).

Thus f and g define a LPR-reduction. The size amplification is a; o ay. It is

well known that the composition of two LOGSPACE, NCF,NC, P-reductions is

computable in the same functional class.

Il

. An algorithm for L works as follows: given an instance x first compute f(z), then

approximate a local optimum with the algorithm for M, then map the obtained
solution s to a solution to z using ¢. Then

Ri*(g(s,2),2) = O(Ryf (s, [(x))) = O(p(| f(2)])) = O(pla(|2]))).

3. Analogous to 2. O
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Theorem 2.15 1. NC*-Fripy, is complete for the NC*L£LSP -mazimization problems
via NC-LPR-reductions.

2. NCF-FLip is complete for the NC*LS-mazim. problems via N'C-LPR-reductions.
3. FLIP is complete for the PLS-mazimization problems via P-LPR-reductions.

PRrOOF: First to the inclusion statements. Clearly the bound on the cost function
in 1. holds. FFurthermore it has to be shown that the three algorithms of definition 2.12
belong to functional A'C* (statement 1. and 2.) resp. functional P (statement 3.). For this
it suffices to show that the cost function is computable in these classes (given a solution
and an instance, i.e., a string and a circuit). It is well known that universal circuit families
exist that can simulate any circuit of size at most ¢ and depth at most d with polynomial
size (in ¢) and depth O(d) (see [We87], theorem 8.3). The universal circuits compute the
cost of solutions to FLIP instances, while having asymptotically the same depth that the
input circuits are allowed to have. The universal circuit family has polynomial size. This
places the cost function in the desired class.

Now to the hardness results. We show how to LPR-reduce every PLS-maximization
problem L to FLIP in a way that preserves polynomial bounds on the cost function and
leads to circuits (FLIP-instances) having asymptotically at most the same depth as the
circuits of the algorithms Ay, By, Cr. This implies the theorem.

Let L = (P,C,N) be some maximizing local search problem in PLS. First L is
LPR-reduced to an intermediate problem () with a trivial feasibility predicate, the 1-flip
neighborhood, and only solutions of nonnegative cost. This can be done by a slight mo-
dification of the proof that every PLS-problem can be PLS-reduced to a PLS problem
with these properties given in [JPaY88]. There FLIP was defined as a minimization pro-
blem and its maximization version was reduced to this minimization problem by flipping
all output bits of a given circuit, a technique that clearly does not preserve approxima-
bility. So the proof is restated here with the necessary modifications for maximization,
and the necessary observations for showing that this is a LPR-reduction (remember also
that we have allowed local search problems to have solutions with negative cost, which
causes some extra trouble). After the reduction to @ it is easy to LPR-reduce ) to FLIP,
because all structure of @) lies in its (nonnegative) cost function.

Lemma 2.16 PLS-maximization problems L can be P-LPR-reduced to PLS-mazimi-
zation problems Q) wilh trivial feasibility predicate, the 1-flip neighborhood, and only so-
lutions of positive cost, where polynomial bounds on the cost function are preserved. If

L € NC*'LS, then Q € NC*LS and the reduction is computable in functional NC.

We may assume that all solutions to an instance = of L have the same length p =
poly(|z|) and that no two of them are within Hamming distance 1 of each other. The
neighborhood can be restricted so that each solution has at most one neighbor, which is
the one returned by algorithm Cy, from the standard local search procedure implicit in 2.12
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(note that neighborhoods are allowed to be asymmetric). This modified problem has the
same local optima as L, now these optima have no neighbor. Note that the modification
of L can be computed in functional LOGSPACE.

Now the modified problem L will be reduced to (). The set of solutions to f(z) in @
is {0,1}*P*2 The neighborhood is 1-flip. The cost function will be designed such that
only strings corresponding to solutions of nonnegative cost to = in L are candidates for
local optima of f(z) in Q. The cost function Cq of @) is defined as follows (depending on
the cost function Cp, of L): Let u be any feasible solution to x with nonnegative cost.

1. wull: cost (2p+5)(Cr(u,z)+1)—2
2. uul0: cost (2p 4+ 5)(Cp(u,x)+1) =1
3. uu00: cost (2p + 5)(Cp(u,x) + 1)

4. uv00, where u is not locally optimal and v is on the shortest Hamming path from u
to its neighbor w: cost (2p + 5)(Cr(w,x) + 1) — p — h — 4, where h is the Hamming
distance between v and w (h > 0)

5. vul0, v is any string of length p: cost (2p + 5)(Cr(u,z)+1) —p—3

6. vull, v is any string of length p: cost (2p + 5)(Cp(u,x)+ 1) —h — 2, where h is the
Hamming distance between v and u.

Every string vwyz of length p+p+ 141 that is not in this list has cost p — h 41 for the
Hamming distance h between w and the standard solution u, given by algorithm Aj;,.

First note that every solution to f(z) has positive cost, because u and u, have nonne-
gative cost, and h < p is always true.

Now consider any solution vwyz to f(z) that is not in the list 1)-6). There is a
local search path from vwyz to vusll, because Co(vu,ll, f(z)) > p + 3 due to 6) and
Co(vwyz, f(x)) = p—h+1 for all win Hamming distance A from u,. vwyz can be changed
to vugyz and afterwards to vugll via 5) and 6). A solution vull (for some feasible solution
v to @ with nonnegative cost) can be changed to uu00 via 6) and 1),2),3).

Only solutions wu00 to f(a) (for some feasible solution u to @ with nonnegative cost)
can be locally optimal, because all other solutions in the list can be improved. wu00 is
locally optimal (for f(z)) iff u is locally optimal (for z): if u is no local optimum then
uu00 can be changed to uw00 using 4), to wwll using 5),6), and to ww00 using 1), 2), 3).
If u is a local optimum then u has no neighbor w, and wu00 is locally optimal, because
no solution to x is in Hamming distance 1 from u, and thus no neighbor of uu00 in the
list has larger cost than uu00.

Now to the exact definition of the reduction to @): an instance = of L is mapped
to an instance f(x) of @ as described: all strings of length 2p + 2 are solutions, the
neighborhood is 1-flip, the cost is as just defined. The three algorithms Ag, Bg, Co are
easy to derive from that. A solution vwyz to f(x) is mapped by ¢ to w, if w is a solution
to @ with nonnegative cost, to N(v) (the neighbor of v in z) if vwyz fulfills case 4) of the
list, otherwise to the standard solution u, given by Aj. The mapping f is computable in
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functional LOGSPACE. ¢ is computable in functional NC* resp. polynomial time if A;,
By, and Cy, are. Note that Q € NC*LS if L € NC*LS, and that a polynomial bound on
the cost function is preserved.

We have to show that R¥*(g(vwyz,z),z) = O(Rg (vwyz, f(x))) for every solution
vwyz to f(x). Let syp(x) and s,,(f(2)) denote locally optimal solutions to @ resp. f(z)
with smallest nonnegative cost.

Let s = g(vwyz,x). Then s = uy implies Cp(w,z) < 0 and 0 < Cy(vwyz, f(z)) < p.
Otherwise s = w or s = N(v). Note that Cp(s,z) > 0. It will be important that
(2p +5)(Cr(s,x) + 1) = Cq(ss00, f(x)) > Co(vwyz, f(z)).

1. If Cp(s,x) > Cr(sopt(2), 2) then RP¢(s,2) =1 < Rlé)c(vwf z, f(x)).

Lo

It Cp(sope(@),2) > Ci(s,2) = 0 then

Co(sopt(f()), f(2))
Co(vwyz, f(x))

(2p + 5)(CL(sope(x), x) +1)
(2p +5)(CL(s,2) + 1)

= CL( op/< ) )+ L= le( )

RE (vwyz, f(x)) =

3. If Cp(sope(z),2) > Cpr(s,z) > 0 then

Co(sopt(f()), f(2))
Co(vwyz, f(z))
(2p +5)(Cr(sop(), 2) + 1)
- (2p +5)(Cpr(s,z)+ 1)
Crlsope(@)y @) + 1 1 e,
Cr(s.2) 1 §R (s,2).

RE (vwyz, f(x))

This proves the lemma.

Now we reduce () to FLIP. An instance = of () is mapped to a circuit that computes
Cg. This defines the instance mapping f. For every s: g(s,z) = s. This is a LPR-
reduction, because f(z) exactly simulates z. Q € N'C*LS implies that this is a reduction
to NCF-FLIP. Q € NC*LSP" implies that this is a reduction to NC]QFLIP[O!]. O

Theorem 2.17 1. Local n*/*-approzimation of NC'-FLIPy,,, solves a P-hard pro-
blem.

S

Local 2" -approximation of NC'-FLIP solves a PLS-hard problem (for an ¢ > 0).

3. Local n-approzimation of a problem that is NC' LS -hard via NC-LPR-reductions
solves a P-hard problem (for an ¢ > 0).

-

Local 2" -approzimation of a problem that is NC'LS-hard via P-LPR-reductions
solves a PLS-hard problem (for an ¢ > 0).
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Proor:

1. Fact 2.9 and theorem 2.13 imply that finding local optima for /\/’Cl—FLIPk.log solves a
P-hard problem. We show how a local n*/2-approximation can be used to determine
local optima exactly.

A given logarithmic depth circuit C' of size n with k- log n outputs can be mapped
to a circuit C” that computes the output of C' on an input and on all neighbors of
this input. After this C" determines whether its input is locally optimal or not. If
the input is not locally optimal, then C” outputs the cost of the input as computed
by C. If the input is locally optimal, then C’ increases its cost to n?* (C' has twice
as many outputs as ().

The test whether one number is the maximum of n numbers with n bits (here we
have only O(logn) bits) can be done in logarithmic depth and size O(n?) by n
parallel standard algorithms for comparison (see [We87]). Thus the size of C' is

O(n?), the depth O(logn).

The construction yields an instance of N'C'-FLIP}.,,, because the size of C"is O(n?)
and € has 2klogn = klog(n?) outputs. A (n?)*2-approximation finds a solution
that is locally optimal for €', because local optima of C’ have cost n** and a n*-
approximation must find a solution of cost at least n*. Only local optima of ("
(and thus of C') have such large cost. Relative to the circuit size m of C' the

approximation has a local performance ratio of m*/2.

o

The same construction as in 1) applied to a logarithmic depth circuit of size n yields
a logarithmic depth circuit C” of size O(n*) again. This time it is possible to use
n? outputs. Local optima are increased to cost 27° . Other solutions have cost at
most 2". The size m of C" is O(n?), the depth logarithmic, a 2°™-approximation is
sufficient to find local optima (for some ¢ > 0).

3. When a problem L that is NC'£S?*"-hard via NC-LPR-reductions can be approxi-
mated within n¢, then NCl-FLIP;;.log can be reduced to L with size amplification n*
(for some k' possibly depending on k), and can thus be approximated locally within
O(n*") due to theorem 2.14. If € < k/(2k') then this yields a n*/2-approximation
of ./\/ClFLIPMOg and solves a P-hard problem due to part 1.

4. If a problem L that is NC'£S-hard via N'C-LPR-reductions can be approximated
within 27, then NC*-FLIP can be reduced to L with some size amplification n* and
can thus be approximated locally within 0(2("k)€) due to theorem 2.14. This solves
a PLS-hard problem for ¢ < 1/k due to part 2. a

Now we know that complete problems under LPR-reductions exist and have no consi-
derably more efficient local approximation than local optimization algorithms. In section
3.3 we will encounter another problem that is complete for PLS via P-LPR-reduction.

[N
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3 Investigating the Hopfield Energy Function

Remember the definition of Hopfield nets given in section 2.1. The goal of a Hopfield net
is to reach a stable configuration, i.e., a state s in which for any neuron v; and its state s;
the following holds: s; =1 <= 3, w;;s; > ;. Now consider the following quadratic

expression:
S| = Z Wi jSiS; — Ztisi-
i<j i

w; ; = w;; s the symmetric connection strength between v; and v;, and ¢; is the threshold
of unit v;. The first sum counts every undirected edge once. We now require that for
neuron v; the sum 37, w; ;s; never equals ;. This can easily be fulfilled by choosing
t; to be .5 larger than an integer and all weights as integers. If neuron v, computes its
threshold function 0, (w1, ..., Wk, tx) and changes its state, then the following holds:
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Definition 3.1 The function
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is called the “Hopfield energy function” for the Hopfield net (V, 2, 0) with w; ; = (({v;,v;})
for {vi,v;} € E and w; ; =0 for {v;,v;} € E and t; = {(v;).

Theorem 3.1 A Hopfield net is in a stable state iff its energy function is in a local

mazimum. Fach computation of a neuron that changes its state increases the value of the
enerqy function.

23



Hopfield nets and the energy function are usually defined differently in two aspects.
First the energy function is often multiplied by —1 in order to let energy decrease (Hopfield
nets were first introduced by a physicist who did probably not like the idea of a system
stabilizing itself at maximum energy). We leave the negation out and view the energy
function as a maximization problem.

The other difference concerns the domain of the state variables. Usually {—1,1} is
preferred. This makes the application for associative memory slightly easier. Clearly a
translation between {—1,1} and {0, 1} is easy and both energy functions have the same
optima. The difference is that the translation introduces constants into the function
which can be omitted if one is only interested in exact optimization. If one wants to
approximate local optima these constants however become important. We are not aware
of any mechanism translating our lower bounds for the complexity of approximation over
{0,1} to the domain {—1,1}, at least not if we forbid constants in the energy function,
i.e., self-loops (since s;5; = 1) in the net. All results for the {0, 1}-Hopfield function are
valid for {—1, 1}-nets with self loops.

But self loops have brutal effects: it is easy to show that the polynomially weigh-
ted Hopfield function over {—1,1} with self loops and only negative weights cannot
be n*-approximated locally in NC (unless P = NC). A slight modification of the P-
completeness proof for the problem to find local optima of MAX CUT in [SchY91] can
induce a tiny gap between “accepting” and “rejecting” local optima (by adding 1 for
accepting). Then the overall energy can be decreased to 0 resp. 1 by a negatively weigh-
ted self-loop. Now all weights can be multiplied by a polynomially large number which
increases the gap between accepting and rejecting. But this method can clearly not be
used if self-loops are forbidden—and there is no reason to allow them since they carry no
information. For other effects of self-loops see [Par94].

The reason why we chose the domain {0, 1} is that the main interest in Hopfield nets
stems from their abilities in combinatorial optimization. This domain seems to allow more
comfortable ways of encoding optimization problems. Both possibilities offer the same
profile concerning local optima, but whereas the {0,1} domain allows to encode problems
in a way that the quality of approximations is preserved, this seems to be more difficult
on the domain {—1,1} (examples will be given in section 3.2).

Another aspect of Hopfield nets is the size and the sign of the weights. The Hopfield
energy function will be examined with several restrictions: first with weights of unit size,
polynomial size, unbounded (exponential) size. This distinction is important (making a
big difference to acyclic nets, see [Gol92]). Secondly the sign of weights will be restricted:
positive weights, negative weights, and both. This has an important effect on the com-
plexity and the power to express problems, too. Thresholds will not be restricted since it
is easy to see that the only difference made by such restrictions is that the problem can
be trivialized (e.g. a net with negative weights and positive thresholds that has only the
vector of zeroes as local optimum). The different versions of the Hopfield function will be
called P-HoPriELD!', N-HoPFIELD??, PN-HOPFIELD? and so on.

The results of this section can be found in the following table.



Max {0,1}- HOPFIELD | Positive Weights | Negative Weights | Pos./Neg. Weights
Poici WijSiSj— Y ilisi

|1|-weights Opt. RTC' NP-cpl. NP-cpl.
Global App. | nApp. NL-hard | n*-App. N'P-cpl. | n*-App. N'P-cpl.
|1]-weights Opt. RTC' P-cpl. P-cpl.
Local App. | nS-App. € AC° ? n-App. & AC°
pol.-weights Opt. RIC NP-cpl. NP-cpl.
Global App. | n*-App. NL-hard | n*-App. NP-cpl. | n-App. NP-cpl.
pol.-weights Opt. RIG P-cpl. P-cpl.

Local App. | n*-App. L-hard ? n*-App. P-cpl.
exp.-weights Ot P-cpl. NP-cpl. NP-cpl.
Global App. | 2-App. NL-hard | n*-App. N P-cpl. | 2°-App. N'P-cpl.
exp.-weights Opt. P-cpl. PLS-cpl. PLS-cpl.
Local App. | 2"-App. N L-hard ? 2"-App. PLS-cpl.

n denotes the number of vertices of the Hopfield net, € a positive constant, and k an
arbitrarily large positive constant depending on the polynomial bound attached to the
weights. “Opt.” denotes the complexity of computing optima, “App.” of approximation.
L and NL abbreviate LOGSPACE resp. NLOGSPACE. The name of a complexity
class stands for an algorithm solving a problem with the complexity of the functional
equivalent of this class, “cpl.” means that an additional hardness result exists, “hard”
indicates a hardness result.

The most interesting open problems concerning this table correspond to the question
marks. We are not aware of lower or upper bounds for the approximation of local optima
for the negative weight Hopfield function, although we conjecture that it can be appro-
ximated in functional N'C resp. in polynomial time because it seems to be very hard to
code even trivial decision problems using N-HOPFIELD.

The following subsections prove the propositions in the table. Note that the third
column of the table “inherits” lower bounds from the other two. Moreover it is clear that
local optimization is at most as hard as global optimization.
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3.1 The Positive Weight Hopfield Function

In this subsection the Hopfield energy function restricted to positive weights is investiga-
ted. This restriction implies that every neuron computes a monotone threshold function.
Local search has a monotone property, too: it is possible to perform local search by star-
ting from the vector of zeroes and changing states of neurons (correctly) from 0’ to ‘1’
until a local optimum is reached. Note that positive contributions to the energy function
come from edge weights and negative thresholds, whereas positive thresholds contribute
negatively to the energy function.

Units with negative thresholds are in state ‘1’ in any local optimum. A net with only
nonnegative thresholds has a trivial local optimum: the vector of zeroes. Thus units
with negative thresholds are necessary for nontrivial local optimization. The size of the
negative threshold on the other hand is not so important: it only adds a constant to
the energy of all local optima. We will call units with threshold —1 “starting buttons”,
because they force the net to start a desired computation. We say that a unit is “turned
on” when it changes its state from ‘0’ to ‘1°, in the opposite case it is “turned off”.

Now we establish a strong connection of the positive weight Hopfield energy function
to the s,t-MIN CuUT problem and deduce the complexity of global optimization from
this connection (note that s,t-MIN CUT is defined on directed graphs and minimizes the
weights of edges leading from the side of a vertex subset s (here defined as ‘17), to the
side of a vertex subset ¢ (here defined as 07%)).

Theorem 3.2 . The s,t-MIN CUT problem with positive weights can be solved by a
positively weighted Hopfield net, i.e., s,t-MIN CUT<;rs P-HOPFIELD.

2. P-HOPFIELD< ;s $,1-MIN CUT.

PROOF:

1. Let GG be any directed graph with weighted edges, and let s,1 be two vertex subsets
that must be separated by a feasible cut. First neglect s and ¢ and consider the
following expression for the minimization of the cut (y denotes the sides of the cut):

min CUT(G) = min»_ wg )yl —y;)
(4,)
= max Y _ wii)(yiy; — i)
()]
= max Z(w(i’j)yiyj — Wi j\Yi)
(7.)

= max Z(w(M) + W(]‘yi))yiy]’ - Z ( Z w(z’,j)) Yi-
Jx(
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Finding a minimum cut is equivalent to maximizing the Hopfield energy function on
a net that has the same graph structure (though undirected edges), as edge weights
Wi ; = W ;) + W), and as thresholds the summed weights on edges leaving a vertex
(observe that computing the sum of weights requires LOGSPACE reductions). But
since all the thresholds are positive the vector of zeroes is locally optimal and we
have neglected s and ¢ so far. Assign threshold —1 to all vertices in s and threshold
>0 Wiy + 1 to vertex v; in £. Now in every local optimum of the Hopfield net all
vertices in s have state ‘17, all vertices in ¢ have state ‘0’. All other vertices behave
like the MIN CuUT problem demands. The Hopfield net and the s,t-MIN Cut
instance have the same locally (and globally) optimal solutions. Unfortunately the
reduction does not preserve approximability.

Take any positive weight Hopfield energy function H. We will implement the cor-
responding net on an undirected s,{-MIN CUT instance. Note that a Hopfield net
with threshold 37;; w; ;/2 for unit v; corresponds to undirected MIN CUT: undirec-
ted graphs are equivalent to directed graphs with edges from v; to v; and from v; to
v; instead of an undirected edge between v; and v;. The noted connection between
undirected MIN CUT and the positive weight Hopfield function follows from the
equations in 1.

We introduce two new vertices v! and v° into the net H that will be forced to belong
to different sides of a feasible cut (by the s,¢ condition). The side of v! defines the
state ‘17, the side of v° the state ‘0’. These vertices will be used to turn thresholds
into edges resulting in a s,-MIN CUT instance.

If a vertex v; of the Hopfield net H has threshold ¢; < 37..; w; ;/2, then connect v;
to v' with weight 37;; w;; — 2¢; and change the threshold to 3=, w;; — ;. If v' is
in state ‘17 then this does not change the computation of v;, because

input™ — 1Y = input + (Z w; j — 2t;) — (Z w; ;j — ti) = input — ;.
J# JF

Now the threshold 7" is exactly one half of the sum of edges incident to v;.

If a vertex v; of the Hopfield net H has threshold #; > 3=.; w; ;/2, then connect v
to v with weight 2t; — >, w; ; and leave the threshold unchanged. If v° is in state
‘07, then this connection adds nothing to the input of v;, but makes the threshold ¢;
one half of the sum of edges incident to v;.

The computation of H is unaltered, but all units act as in MIN CUT, except of v°
and v'. Now remove the thresholds, take the weighted graph, use s = {v!'} and
t = {v°}. These two vertices are on different sides in any feasible cut. Now finding
a locally (or globally) optimal s,#-MIN CUT determines a locally (resp. globally)
optimal solution to the P-HOPFIELD instance H, where the side of s = {v'} defines
the units in state ‘17, the side of ¢ = {v°} defines the units in state 0’ O
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Now we know that local (or global) optimization of P-HOPFIELD is as hard as opti-
mization of s,-MIN CuUT. This establishes the following:

Theorem 3.3 I. Finding a global optimum of P-HoPFIELD! is possible in functional
RTC'.

2. Finding a global optimum of P-HOPFIELD?® is possible in functional RTC".

3. Finding a global optimum of P-HOPFIELD? is possible in polynomial time, and
solves a P-complete problem.

Proor: In the proof of theorem 3.2 it was shown that finding global optima for P-
HOPFIELD is possible by finding global optima for s,¢-MIN CUT (using a LOGSPACE-
reduction). There is a well-known connection between s, ¢-MIN CUT and s,t-MAX FLOW:
both have the same instances, and global optima of the two problems have the same value
on the same instance . Moreover, given a globally optimal solution to a s,-MAX FLoOw
instance, one can obtain a globally optimal feasible minimum cut by breadth first search
(see [VLIO0]), and thus in AC' (see [KarRa90]).

It is possible to find a globally optimal s,-MAX FLOW in functional R7C" (see
section 4.1) in the case of polynomial weights. Thus the first two statements of the
theorem follow. In the case of exponential weights global optima of s,{-MAX FLOW (and
thus of P-HOPFIELD) can be found in polynomial time (see [VL90]).

Determining the value of the global optimum for unbounded weight s,¢-MAX FLow
is known to solve a P-complete problem (see [KarRa90]). The second part of the third
statement holds, because this value can be found by global optimization of P-HOPFIELD*?
(and with this of s,¢-MIN CUT). O

It is unknown whether locally optimal solutions may be found faster or without the
randomization in the case of polynomial or unit size weights. In the case of exponential
weights this task is not easier.

Theorem 3.4 Finding a local optimum of the Hopfield function with positive exponential
weights solves a P-complete problem.

Proor: The MONOTONE CIRCUIT VALUE PROBLEM (see [J90]) is P-complete. Gi-
ven a monotone circuit C' of size m with fan-in 2, fan-out 2, and an input s, build a
Hopfield net [ consisting of m units simulating the m gates. The internal gates of the
circuit are assumed to be given in topological order.

Let W = 4™. The units for the input gates of the circuit have threshold —1 if their
input bit is 1, W otherwise. The unit for internal gate ¢ has threshold 2W/4' — 1 for an
AND-gate and W/4' — 1 for an OR-gate. The graph structure is the same as the graph
of the circuit (directed edges are replaced by undirected edges). Edges leading into unit
i are weighted with W/4".

Now local search is forced to follow the computation from the inputs to the outputs:
changing unit ¢ to the correct value of gate ¢ gains more than it can lose on the units with
higher numbers.



Consider any situation supposed to be a local optimum. Units simulating inputs
clearly have the correct state, because a —1 threshold allows to turn a unit on, whereas
a W threshold cannot be exceeded and units with this threshold are off.

Now to the units simulating the internal gates of the circuit. A “predecessor” of
unit ¢ is a unit simulating a predecessor of gate ¢ in C'; a “successor” of unit 7 is a unit
simulating a successor of gate ¢ in C'. A wrong state of a unit simulating an OR-gate can
be corrected by local search, because with one predecessor in state ‘1’ the threshold of the
unit is exceeded while with two successors in state ‘17 the threshold is not exceeded. A
wrong state of a unit simulating an AND-gate can be corrected by local search, because
with two predecessors in state ‘17 the threshold is exceeded and with one predecessor
together with two successors in state ‘1’ the threshold is not exceeded. Thus in a local
optimum all units have the correct values of the corresponding gates and the P-complete
MONOTONE CIRCUIT VALUE PROBLEM is solved, i.e., the circuit output can be read off
from the locally optimal state of the Hopfield net. a

It is possible that global optimization has the same complexity as local optimization
in the case of polynomial weights, too. This is not immediately clear since it is easy to
construct nets where local optima do not even approximate global optima. Thus local
optimization could be easier. But the following lower bounds for local approximation are
rather tight in the case of polynomial weights (theorem 3.7), so that one can say that
local optimization (which is at least as hard as local approximation) is practically as hard
as global optimization for P-HOPFIELD.

Now to lower bounds for local approximation on the three sizes of weights.

Theorem 3.5 The Hopfield function with positive weightls of unit size cannot be appro-
zimated locally within \/n/5 in functional AC°.

PROOF: The MAJORITY function (which is true on m bits iff at least m /2 of them
are 1) cannot be computed by an unbounded fan-in circuit family of polynomial size and
constant depth made of AND, OR, and NOT gates (see [We87], p.333), even if this family
is nonuniform. We will show how to construct positive weight Hopfield nets with a large
gap in the energy function between local optima that “accept” a string for MAJORITY,
and those that “reject”. This gap stays quite large after approximation. It is impossible,
however, to evaluate the energy function in AC® to decide MAJORITY.

A probabilistic constant depth circuit family can separate, given approximating states
of the Hopfield nets, “accepting” from “rejecting”. The probabilistic circuit family leads
to a deterministic nonuniform circuit family for MAJORITY, if a AC® family, or more
generally, a family of polynomial size, constant depth AND/OR/NO'T circuits, is able to
approximate P-HOPFIELD!'l within \/n/5. This leads to a contradiction with the lower
bound for MAJORITY.

Let x be a string of length m. The Hopfield net will be called H,,. For each appearance
of a 1 in & there is a unit with threshold —0.5, for each appearance of a 0 a unit with
threshold L = m*. These units are not interconnected, but they are completely bipartite
connected to m? (not interconnected) units with threshold m /2 if m is not divisible by
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two, else with threshold (m — 1)/2. These units will be referred to as “counters”. Edge
weights are 1.

Now in a local optimum clearly all units of the first class (representing the input )
that correspond to ones in  are on, those that correspond to zeroes are off. If at least
m /2 units of the first class are on, then the counters are on, too. If less than m /2 units
of the first class are on, then the counters are off. Note that the local optimum is unique
in both cases and thus also globally optimal.

A solution approximating the unique local optimum within performance ratio m/3
clearly never contains a unit with threshold L in state ‘1°. If @ ¢ MAJORITY, then such
a solution can contain at most m counters in state ‘1’, because each counter that is on
loses at least .5, and more than m of them in state ‘1’ would imply a larger performance
ratio than m/3.

Il @+ € MAJORITY, then turning on a counter gains at least .5, so all the (edges to)
counters gain at least .5m?, while the other units gain at most .5m. Thus at most a
fraction of 1/m of the overall energy is gained by the thresholds of the units that code
the string. A m/3-approximating solution must have at least 3/m of the optimal energy,
at least 2/m of this energy must be gained by (edges to) counters. This is at least the
gain of (edges to) m?-2/m = 2m counters. At least 2m counters must be on.

Consider the following probabilistic algorithm A for MAJORITY:

e Construct the Hopfield net H,,.

e [ind a m/3-approximating solution to H,,.

e Choose m/2 counter values ¢y, ..., ¢, /2 independently.
e Output OR(eq, ..., ¢ny2)-

This probabilistic algorithm can be performed by a probabilistic constant depth, po-
lynomial size circuit family made of AND, OR, and NOT gates if a circuit family with
the same limitations exists that performs step 2. The probabilistic circuit family can be
turned into a deterministic circuit family with the following fact (from [We87], p.356).
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Fact 3.6 Let C be a probabilistic circuit with arbitrary fan-in, size v, inputl size n, depth
d, and the following connection to a decision [ on inputls x:

proffC(e) = 11f(@) = 1] 2 5 + =

A problC(z) = 1|f(x) = 0] < ;

[v[>—‘

Then a deterministic circuit of size O(n®log®(n)r) and depth O(d) exisls that computes
f. The construction does not preserve uniformity.

Consider a circuit of the family A. Let ¢; be the random variable that is 1 when the
ith chosen counter is on, and 0 otherwise. Then the probability that the circuit outputs
I instead of 0 (< m counters are on) is

mn

plOb\/(,Z—l <Z proble; = 1] =m/2 - 72:

1
m 2

The probability that the circuit computes 0 instead of 1 (> 2m counters are on) is

L e m/2
prob[V,;c; =0] = H probe; = 0] < (u)

m?

m— 9 mf2 m — 1\™
= <
m m

1
< - < 0.37
e

Thus the probability of correct acceptance is larger than 0.63. The conditions to fact 3.6
are satisfied, and thus a polynomial size, constant depth, unbounded fan-in circuit family
made of AND, OR, NOT gates exists that decides MAJORITY if such a circuit family is
able to approximate P-HOPFIELD. This contradicts the lower bound we referred to. The
net H,, has size n = m?* +m, a local \/n/5 < V2m?/5 < m/3-aproximation suffices. O

Theorem 3.7 A local n*-approximation of the Hopfield function with positive weights of
polynomial size solves a LOGSPACE-hard problem, when weights of size n*+t' are allowed.

Proor: Take any language L in LOGSPACE. Then a Turingmachine M deciding L

exists that has the following properties:

—

. M uses O(log n) workspace.

S

M has one unique accepting configuration acc.

3. Every configuration of M has exactly one successor, acc is its own successor.

The second property may easily be fulfilled by forcing the machine to clear its tape
and move to a distinguished tape position before halting, resp. starting the accepting
loop.

In the following a Hopfield net with polynomially bounded size and weights is con-
structed that simulates the computation of M on an input string z. The first step is the
construction of a computation graph of M on .
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Lemma 3.8 A word x can be mapped to a directed graph Gar, of polynomial size with
ouldegree 1 and two distinguished vertices start and acc, such that a computation of M on
x corresponds to a path beginning at start. This path reaches acc iff v € L. The mapping
is computable in functional AC®.

Take a vertex for every configuration of M, i.e., every state of M and its workspace.
The set of vertices has size m polynomial in |z|, because the workspace is logarithmically
bounded (in |z|), and the tape-alphabet as well as the set of states of M has constant
size. Now connect every ordered pair of vertices if the configuration corresponding to the
second vertex is the successor of the configuration corresponding to the first vertex. This
can be done in parallel and in constant time. start is the vertex of the start configuration
(on z), acc of the unique accepting configuration. Every vertex has outdegree 1, because
M is deterministic.

Clearly the path in Gy, beginning at start corresponds to the computation of M on
x. If accis reached, then it is reached within m steps, because otherwise the machine gets
into an infinite loop earlier and cannot reach acc anyway.

Now the graph G, is mapped to a Hopfield net that is able to find paths in directed
graphs with the property that every vertex has outdegree < 1.

Lemma 3.9 Gy, can be mapped to a Hopfield net Hyy . of polynomial size with positive
polynomial weights, that possesses only one local optimum. This oplimum corresponds to
the path in Gyr. beginning at start. The mapping is computable in functional AC°.

Let W = (m?)k*! (k> 0 is a constant). Hy, is described by a matrix of m rows and
m columns. Each column is a copy of the vertices of Gy ,.. The directed edges of Gy,
are replaced by undirected edges between neighboring columns. Formally the set of units
is V = {v;;]0 < 7,7 < m — 1}, the edge set is £ = {(vi;,viy14)|(v;,vr) is an edge in
Gy}

Each column is going to represent one time step in the computation of M on x. In
the Oth column we want the copy of start to be on, in the :th column the copy of the 2th
successor configuration of start.

All units in column ¢ have threshold W — 2¢, all edges between column ¢ and 7 + 1
have weight W — 2: — 1. A first exception is the unit vgstart corresponding to the start
configuration in column 0, which has threshold —1. This unit will be the starting button
of the net. The second exception is the unit v,,—1,acc, the mth copy of the accepting
configuration, which has threshold 1.

Now consider the local optima of Hpr,. Obviously the set of units in state ‘17 in
any configuration can be partitioned into a set of trees (since the whole graph has this
property, too). The weight of any edge (v; j,viy1,) is larger than the threshold of viyq 4,
but smaller than the threshold of v; ;. Thus if v; ; has no neighbor in column ¢ — 1 which
is on, then turning v;; off gains the threshold of v;; and loses the weight of the single
edge from v; ; to column ¢ + 1. This operation clearly gains. Turning on v,y 4 if v; j is on
clearly gains, too, because the gained edge has larger weight than the threshold of v; 4 .

32



W+4 W43 W42
) —2m -2m —2m
start, —1 —

«— 1, acc

In this way a path of vertices in state ‘1’ in Hys, can be “extended” to the right by
turning right neighbors on, and can be “deleted” from the left by turning its leftmost unit
off. This holds for every path except the one starting at vgstart, which is the only unit
that does not cause costs (the starting button).

To conclude: In column 0 only vgstart is on, and only the units in the unique path
beginning at vostart and leading to the right through all columns are on.

Lemma 3.10 Hys, has a unique local oplimum that corresponds to the path in Gy,
beginning at start. [f this path reaches acc, then the optimum has energy larger than
m?+L else it has energy m. Any state of Hyy, that is not a path from start to acc has
enerqy at most m.

Only states of the Hopfield net, where all units in state ‘1’ form a path beginning
at vostart and leading to the right, have positive energy. Every other state loses more
with thresholds than it gains with edges and has thus negative energy. A state of H,, .
corresponding to a path that begins at vgstart has energy equal to the path’s length + 1.
Only if the path reaches v,,_1 acc an additional gain is made: The edge gains W —2m + 3,
the unit costs 1. Thus an “accepting path”-state has energy

(m=1)+ (W =2m+3) =1 =W—m+1>m*,

Any other state has energy at most m, because it loses at least as many thresholds as it
gains edges.

Thus a local optimum of Hyr, has energy larger than m?**! if 2 € L, and energy at
most m if v & L. A n*F = m**-approximation (n = m? is the size of the Hopfield net)
of a local optimum of the Hopfield energy function with positive polynomial weights is
sufficient to find out whether @ € L or not. In the case of acceptance the approximating
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state must already be the local optimum, because this is the only state with enough energy
to approximate within the demanded local performance ratio. Such an approximation
solves a LOGSPACE-hard problem, because given an approximating state-vector one
can easily test whether it represents a path from vgstart t0 vy—1.acc- O

The previous result shows that local approximation cannot be done below AC' (assu-
ming the hierarchy of complexity classes inside N'C shown in fact 2.4 is strict), whereas a
global optimum can be constructed in R7TC"'. These bounds are very close. An interesting
open question is whether a N'C algorithm may find or approximate local optima.

If the weights are unbounded the lower bound can be improved slightly.

Theorem 3.11 A local 2" -approximation of the Hopfield energy function with positive
weights of exponential size solves a NLOGSPACE-hard problem.

PRrOOF: Let L be any language in NLOGSPACE. Then a nondeterministic Turing-
machine accepting L exists such that the following holds:

1. M uses logarithmically bounded workspace.

2. M has a unique accepting configuration.

Lemma 3.12 Given a string x a digraph Gy, can be constructed in ACY where Gy has
polynomial size, every vertex has indegree at most 2 and outdegree at most 2, and there
are two distinguished vertices start and acc, such that x € L iff a path from start to acc
exists.

First take the configuration graph of M on input z. Every configuration has at most
a constant number of predecessors and successors since the numbers of changes a Turing-
machine can produce in one step is bounded. For the graph Gy, indegree and outdegree
are reduced to 2 by inserting trees. The size of Gy, is polynomial in |z| since the work-
space of M is logarithmic in |z|. start is the vertex of the start configuration (on z), acc
of the unique accepting configuration. If @ € L, then a path exists that begins at start
and reaches acc within m steps. The problem to find such a path is called the GRAPH
ACCESSIBILITY PROBLEM (see [J90]).

Lemma 3.13 Gy, can be mapped to a Hopfield net Hyr, of polynomial size that has
positive weights and only one local optimum. This local optimum corresponds to all paths
in Giap o that begin at start. Finding this optimum simulates the nondeterministic compu-
tation of M on x. The mapping is computable in functional AC°.

Let W = 4m2, where m is the size of G'yr,. The Hopfield net is described by a matrix
of m rows and m columns plus one additional unit. It has basically the same connections
as the net of theorem 3.7. Every column is a copy of Gar,. Edges connect neighboring
columns only. Formally the set of units is V' = {v; ;|0 < 7,57 < m — 1} and the edge set is
E = {(vij,vig16)|(v;,vx) is an edge in Gar,}. This time however we need one additional
unit that is only connected to vy, 1 acc-
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The thresholds and weights are chosen somewhat differently than in the construction
of theorem 3.7, because the net will compute in another way. A local optimum will not
represent the successors of start, but the vertices that are not reachable from start. The
columns will again correspond to the time steps of the computation of M on z. The unit
v;; will be on in a local optimum iff v; in G, is not reachable from start in at most ¢
steps. A vertex (except of start) is not reachable in at most 7 steps iff all of its predecessors
are not reachable in at most 2 — 1 steps. Thus v; ; must compute a logical AND on its
neighbors in column 7 — 1: if these are all on, then v; ; can be turned on.

The edges between column ¢ — 1 and ¢ have weight W/4'. The thresholds of the units
in the first column are all —1 except of unit vgstart that has threshold W. All other
v; start have threshold W, too. All v; ;, where v; is different from start and ¢ > 0 have the
following thresholds: if v; has indegree 0 in Gy, then v;; has threshold —1. If v; has
indegree 1 in Gas ., then v;; has threshold H///li — 1. If v; has indegree 2 in Gz, then
v; j has threshold 21/V/4i — 1. The additional unit that is connected to v,,_; acc will create
the approximation gap. It has threshold 1 and its connection has weight W/(4™).

A local optimum of Hpys, has the following properties: All units in column 0 are on
except the one corresponding to start. Every “indegree 0-unit” in every column is on,
every copy of start is off. Every unit in column ¢ with all neighbors in the left neighbor
column in state ‘17 is on. No unit with at least one of these neighbors in state ‘0’ is on.

This holds since any unit may change its state independent of its right neighbors. If
a indegree 2 unit in column 2 is on, but one of its left neighbors is not, then turning it
off gains the threshold of 2W/4" — 1 and loses at most one edge to column 7 — 1 and two
edges to column 7 4+ 1. The edges have weight

W[4 4+ 2 - W4+ = (14 1/2) - W/4' < 2W/4° — 1.

If a indegree 1 unit in column ¢ is on, but its left neighbor is not, then turning it off gains
the threshold of W/4' — 1 and loses at most two edges to column ¢ 4 1. The edges have
weight

OW /4 =172 W[4 < W/4' — 1.

On the other hand turning on a unit with all left neighbors in state ‘1’ gains 1.

So in a local optimum state ‘1’ is assigned to all units v; ; such that configuration v;
1s not reachable in £ < 7 steps, ‘0’ to all others. The statement clearly holds for column
0 and all copies of start. We can assume it true for all columns up to ¢« — 1 and conclude
for column 2 that all “indegree 0 units” are not reachable (‘17), all other units are not
reachable in < 7 steps iff their neighbors in column 7 — 1 are all not reachable in <7 —1
steps. This also implies that the local optimum is unique.

Lemma 3.14 Hy;, has a unique local optimum of energy Q(Q(Q'm’2“2”7')) if © ¢ L and
energy O(2m?) if v € L.

If x € L then a path exists from start to acc. Then the local optimum marks this
path (and v,,_1acc) with zeroes. If @ € L then no such path exists and v,,_1 acc is not
reachable and thus set to ‘17 as well as its neighbor in column m. Thus if € L then the
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energy is less than m? (a unit and its incident edges leading to the left contribute at most

1), otherwise at least (from the rightmost edge)
I/V/le o 4m2—m - 22m2—2m‘

Again a very poor local approximation of the Hopfield energy function solves the
language problem: if the approximation has ratio 2" = 9m°+1 then ¢ L implies energy
(m*=2m=1) 2 ¢ [ implies energy at most m?. Any state that has exponentially
large energy however must represent a correct computation in so far that no unit in the

larger than 2

matrix is on that should not be on. To see this assume some unit would be on illegally.
In the case of a unit with threshold W this would lose at least W/2. In the case of a
unit with threshold W/4' this would lose at least 1/2 - W/4" — 1. The unit in column m
costs only 1, but gaining its edge requires to turn v,,—1 acc on and doing this wrongly is
expensive.

Every state that has exponential energy contains v,,_1 acc and its right neighbor in
state ‘17 (correctly), because the edge between them offers the only possibility to achieve
that high energy. Every state that has no exponential energy does not contain v,,-1 acc
in state ‘17, This implies that testing a single bit finds whether the energy is exponential
or not and thus decides the language problem. O

This result is interesting since NLOGSPACE-hardness excludes a NC' algorithm
more securely than LOGSPACE-hardness. Another aspect is that the nondeterminism
of NLOGSPACE allows to exclude a very fast randomized algorithm, i.e., a RANC!
algorithm, because RAC! is probably smaller then NLOGSPACE.

An interesting observation is that the implicitly used NLOGSPACE-complete pro-
blem is evaluation of a polynomial size circuit consisting of AND-gates only (which is the
same as finding out whether an input 0 is connected to the output of a circuit). This
problem can be implemented on a positive weight Hopfield net in a way such that the
possible gain from turning on a unit is bounded and a gap can be produced that exceeds
the gain of the whole computation, but is itself exceeded by the loss of any severe mistake.
Conversely it seems to be difficult to express OR-Gates using only positive weights in a
way such that the gain at every gate is bounded. The reason for the construction using
a matrix is that it is impossible to find out the depth of a gate very fast.

To complete the picture global approximation is considered, too.

Theorem 3.15 1. A global n*/?/2-approximation of the Hopfield energy function with
positive weights of unit size solves a NLOGSPACE-hard problem.

2. A global n*-approximation of the Hopficld energy function with positive weights of
polynomial size (bounded by n** ) solves a NLOGSPACE-hard problem.

3. A global 2" -approximation of the Hopfield energy function with positive weights of
exponential size solves a NLOGSPACE-hard problem.

Proor: It was shown in lemma 3.12 that the GRAPH ACCESSIBILITY PROBLEM is
NLOGSPACE-complete: given a directed acyclic graph G with n vertices, m edges, out-
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and indegree at most 2, and given two vertices s, ¢, find out if a path from s to ¢ exists. To
solve this problem by global approximation of a positive weight Hopfield function we use
a simulation of s,-MIN CUT. Note that the globally optimal minimum cut has a value
of 0 if no path from s to ¢ exists, and a value larger than the least edge weight otherwise.

Let W = n* (for some constant k& > 1) in the case of polynomial weights and W = 2" in
the case of exponential weights. For the Hopfield net H take the graph G, change directed
into undirected edges, weight all edges with W2, assign threshold outdegreeq(v;) - W? to
every vertex v;, threshold outdegreeq(s) - W?*—W to s, threshold W2 to t. outdegreeq(v)
denotes the outdegree of v in G. ‘

Now the vector of zeroes is clearly a local optimum. The thresholds are chosen almost
as in the simulation of directed s, -MIN CUT, where ‘0" and ‘1’ define the sides of a cut.
It is easy to see from the proof of theorem 3.2 that the energy of a state is the negative
sum of those external edges that replace directed edges in ¢ leading from the side of ‘1’
to the side of ‘0’. An exception is made at s and ¢.

Turning s on does not cost the weights of all edges starting at s, but W less than
that. Turning on ¢ is very expensive, thus ¢ is in state ‘0" in any optimum of /. The only
possibility to achieve positive energy is to turn s on and gain W from its incident edges,
since all other units have thresholds as large as the edges starting at them, and thus every
gain from an edge is lost by thresholds.

If a path from s to ¢ exists in (7, then every state y of H has energy at most 0, because
every cut in (¢ separating s from ¢ costs at least one edge, so that y has energy less than
0, and every other cut puts s on the side of ¢ (in state ‘0’), so that no positive energy
is possible. If no path from s to ¢ exists in (¢, then a cut in G exists that separates the
vertices in the transitive closure of s from ¢, and that costs no edge. This induces an
optimum of /1 with energy W (gained at the edges incident to s).

In the case of unit weights take the previous construction for polynomial weights
(k =1) and replace edges as follows:

The intermediate units have threshold 1, all other units keep their threshold. The new
Hopfield net H' has the same global optimum as H, since all intermediate units can be
set to ‘17 iff both of their neighbors are in state ‘1’ (this does unfortunately not work for
local optimization). The size is increased to N =n + mn? < n + 2nn? < 3n°.
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In the weighted case a W-approximating solution is already optimal, because the least
nonzero energy difference between two solutions is W and the global optimum is W.
In the unweighted case observe that the graph which replaces a weighted edge may be
viewed as one edge that is external iff both “original” vertices are in different states. This
edge “weights” N?/? for the new net size N (the optimum is N'/3). So a N'/3/2 < n-
approximating solution must equal the optimum on the “original” vertices. a

As shown above finding local optima of the positive weight Hopfield function is practi-
cally as hard as finding global optima. In addition to that even local and global approxi-
mation have almost the same complexity as global optimization in the case of polynomial
weights. Thus local approximation may be not too interesting for this easy variant of the
Hopfield function. It remains as open problem whether the positive weight Hopfield func-
tion with exponential weights can be approximated locally or globally in N'C. Answering
this question would be very interesting since this problem is not parallelizable for exact
local or global optimization.



3.2 The Negative Weight Hopfield Function

When the Hopfield energy function is restricted to negative weights then negative thres-
holds contribute positively, edges contribute negatively to the value of the energy function.
Positive thresholds are useless because they cannot be exceeded. We show how to encode
two interesting optimization problems into Hopfield nets with negative weights. First
consider the MAX CUT problem (defined on undirected graphs).

Theorem 3.16 1. The MAX CUT problem with positive weighls can be solved by a
negatively weighted Hopfield net, i.e., MAX CUT <;rs N-HOPFIELD.

2. N-HoPFIELD <;rs MaAX CuT.
Proor:
1. Let GG be any graph with weighted edges.
max CUT(G) = maxy_ wi [(1—s:)s; + (1 — s;)si]

l<7

= max — Z Z (—2w; ;8i8; + Wi ;Si + Wi ;S;)

)
wl
= max Y (s — 30 Y i, - Yy T
DRV ED i gF T gFE
= maxz (—2w; ;)sis; Z Z—wid 5.
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Thus a Hopfield net with negative weights exists that has the same optima as the
Max CuT instance. This reduction preserves the cost of any cut exactly.

Do

Given a negatively weighted Hopfield net H add two new vertices v! and v° which
will be forced to be in state ‘17 resp. ‘0’ in a local optimum. If a unit v; has threshold
b £ Do w; ; /2, then add an edge from v; to v° with weight 2¢; — > Wi j and leave
the threshold unchanged. If a unit v; has threshold ¢; > 37, w;;/2, then add an
edge from v; to v' with weight 3., w;; — 2¢; and change the threshold of v; to
> i wij — ;. This does not alter the computation of the net (as shown in theorem
3.2). But now the threshold of every vertex (except v' and v°) is one half of the
sum of incident edges and thus we search for a locally maximal cut among these
vertices.

To achieve that v° and v! also behave like MAX CUT demands simply insert a very
large negative edge between them and choose their threshold half the sum of their
incident edges. Now all thresholds can be removed. Negate all edge weights (so that
they are positive). Call this graph G.

A locally maximal cut in G clearly separates v! and v°. Define the side of v!
‘1’ and the side of v° as ‘0’. This induces a local optimum for N-HOPFIELD. The
reduction does not preserve approximability. O
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The proof of the previous theorem implies that finding a global optimum for the
negative weight Hopfield function solves a NP-hard problem, since MAX CUT is known
to be N'P-hard (see [GJT79]). Local search is also hard for MAX CuT: in [SchY91] it
was shown that finding a local optimum solves a P-hard problem in the unweighted or
polynomially weighted case, and is PLS-complete in the case of unbounded weights.

Now another famous problem is considered: the INDEPENDENT SET problem. Given
an undirected graph construct a Hopfield net by taking the same graph, assigning weight
—1 to every edge and threshold —.5 to every vertex. Clearly in any local optimum no
neighboring units are both in state ‘1’ since then turning one of them off gains 1 for the
edge and loses only .5 for the threshold. Local and global optima of the net correspond
to local and global optima of the INDEPENDENT SET instance. The energy of an optimal
state is half the size of an optimal INDEPENDENT SET—hence the embedding preserves
approximability (this is a S-reduction).

Theorem 3.17 1. Finding global optima for N-Hopfield solves a N'P-hard problem
even in the case of unit weights.

2. Finding local optima for N-Hopfield solves a P-hard problem in the case of unit size
and polynomial size weights, and is PLS-complete in the case of unbounded weights.

3. Approximating global optima for N-Hopfield within n for unit weights, polynomial
weights, exponential weights solves a N'P-hard problem (for some ¢ > 0.

PrOOF: The first two statements have already been examined earlier on this page.
The third follows from a hardness result for INDEPENDENT SET: [BeSc92] showed that
approximating INDEPENDENT SET within n¢ solves a N'P-hard problem (for some con-
stant € > 0) if MAX 2-SAT has an approximation threshold, i.e., approximating MAX
2-SAT better than some constant is NP-hard. This premiss was shown with methods
from the area of probabilistically checkable proof systems (see [AS92] and [ALMSS92]).
Since we have just S-reduced INDEPENDENT SET to N-HOPFIELD (with unit weights),
proposition 3. is valid. O

The very interesting open question is whether local optima can be approximated easier
than they can be found. Consider the following scale of problems: the Hopfield function
with negative weights of unit size and with the ratio |¢;|/degree; = p fixed throughout the
net. If p = 1/2 then this equals the MAX CUT problem (and can thus be approximated
globally, but is hard for local search), if p = 2/degree; and degree; is fixed throughout the
net, then this is the INDEPENDENT SET problem on graphs of fixed degree (which cannot
be approximated globally, but local optima can be found in N'C). Even this restricted
form of the Hopfield function has the property of being not approximable globally and
being hard for local search (the special property of INDEPENDENT SET of being easy for
local search does probably not generalize to an interesting fraction of the whole scale of
problems since the problems are in general nonmonotone). This problem would be a very
interesting candidate for finding a local approximation algorithm, but unfortunately we
do not know one.



Another interesting feature of this scale of problems is the way they can be expressed
with the Hopfield function on domain {—1,1}. The MaX CuUT problem is expressed by
edge weights —1 and thresholds 0, INDEPENDENT SET by edge weights —1 and thresholds
degree(v) — 1. Though it is easy to approximate MAX CUT, this seems to be difficult
for the negative Hopfield function on domain {—1,1} with thresholds 0. The known
approximation algorithms for MAX CUT do not generalize to a good approximation for
this function. On the other hand the function that expresses INDEPENDENT SET can
easily be approximated: simply set every unit to ‘1’. Now all thresholds are gained and
their sum is twice as large as the sum of edges. But of course this does not yield an efficient
approximation for INDEPENDENT SET (which does not exist). This is an example of the
way the domain {—1,1} can be rather uncomfortable for an approximation preserving
expression of optimization problems.
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3.3 The Positive and Negative Weight Hopfield Function

We turn to the consideration of the Hopfield function with unrestricted signs on the
weights (note that maximization of PN-HOPFIELD is equivalent to maximization of the
sum of weights of satisfied conjunctions in a 2-DNF formula with signed weights and
only unnegated variables). Of course hardness results that are valid for a restriction on
the signs keep valid.

Theorem 3.18 1. Finding a globally optimal solution to the PN-HOPFIELD function
solves a N'P-hard problem in the case of unit size weights.

2. Finding a locally optimal solution to the PN-HOPFIELD function solves a P-hard
problem in the case of unit size and polynomial size weights, and is PLS-complete
in the case of unbounded weights.

3. A global n“-approximation of the PN-HOPFIELD function with unit weights solves a
NP-hard problem (for some ¢ > 0).

PRrROOF: Follows from the same results in the previous section. ad

But there is still a possibility to strengthen the above result on global approximability
since it is derived from the INDEPENDENT SET problem, which is believed to be incomplete
(see [Ka92]) for the class of NP-maximization problems via S-reductions. We conjecture
that the N-HOPFIELD function is incomplete, too. The PN-HOPFIELD function on the
other hand is complete. First we need two complete problems.

Theorem 3.19 1. LONGEST PATH WITH FORBIDDEN PAIRS is complete for the class
of N'P-maximization problems with polynomially bounded optima via S-reductions.

2. MAX CIRcUIT QUTPUT is complete for the class of N'P-maximization problems via
S-reductions.

Proor:
[. See [BeSc92].

2. Clearly MAX CIRCUIT OUTPUT is a NP-maximization problem. For the reduction
take any NP-maximization problem L = (P,C'). An instance x of L is mapped
by the instance mapping f to the following instance of MAX CIRCUIT OUTPUT:
a circuit that, given an input s, outputs 0 if P(s,z) = 0, and outputs C(s,z)
otherwise.

A solution s to f(x) with P(s,2) = 0 is mapped by the solution mapping g to a
standard solution of nonnegative cost to x. A standard solution of nonnegative cost
must be computable in polynomial time due to definition 2.9. A solution s with
P(s,z) =1 1is mapped by ¢ to s.

Now clearly @ and f(z) have the same global optima, and any solution to f(z) is
mapped to a solution to @ of at most the same performance ratio. Thus (f,¢) is a
S-reduction (with, of course, polynomial size amplification). O
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Theorem 3.20 1. The PN-HOPFIELD function with unit weights is complete via S-
reductions for the class of N'P-maximization problems with polynomial optima.

2. The PN-HOPFIELD function with unbounded weights is complete via S-reductions
for the class of N'P-maximization problems.

3. Approximating the PN-HOPFIELD function with unbounded weights globally within
2" solves a N'P-hard problem (for some ¢ > 0).

PROOF:

1. By S-reduction from LONGEST PATH WITH FORBIDDEN PAIRS. We first construct
a Hopfield net with polynomial weights for this problem, and then show how to
reduce the weights to unit size. Let (G, P) be an instance of LONGEST PATH WITH
FORBIDDEN PAIRS, where (¢ = (V| I) is a directed graph, P a collection of forbidden
pairs. Let m denote the number of vertices of (. The Hopfield net H that is going
to find optima of ((, P) is described by a matrix of m? units {v; j|i,j =0...m—1}.
The columns represent m copies of the graph. Let L = 2m?® + 1 and W = m?. The
connections of H are as follows:

e Positive connections:

— between v; ; and vy if (vj,v5) € E and 0 <7 <m — 2: weight W
e Negative connections:

— between v; ; and v;;, for all j # k and 0 < <m — 1: weight —L

— between v; ; and vj; for all 2 # 7 and 0 <k < m — 1: weight —L

— between v; ; and vy, if (vj,v;) € P, for all ¢ # k: weight —L

The thresholds of all units in column 0 are 0, all other units have threshold W — 1.

0 w W—1 w Ww-1 W-1 w Ww-1
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A global optimum of H represents a longest simple path (of length k) without
forbidden pairs in the following way: one unit per column is on in the columns 0-£.
The unit that is on in column ¢ corresponds to the ith vertex of the path. These
units form a path in H, too. All other units are off.

To see this consider a globally optimal state of the net. First assume that two units
in the same column are on (i.e., the state does not represent one or more paths in
(). Then the loss of this mistake is L and thus larger than the sum of all positively
weighted edges incident to a single unit (which is at most 2m - W = 2m®). So at
least one of the units can be turned off. The same holds if two units in the same
row are on (i.e., a representation of paths that traverse the same vertex twice), and
if two units that are on correspond to two vertices of a forbidden pair. Thus an
optimum corresponds to one or more simple paths without forbidden pairs.

Only a representation of a single path that starts in the first column can have
energy more than 0, because any path traverses one more vertex than edge. A path
of length & loses k + 1 thresholds and gains £ edges. Only if one of the thresholds
is 0 (the path starts in column 0) positive energy is possible, because the threshold
W — 1 exceeds the possible gain of any path. Thus a global optimum represents one
simple path beginning in column 0 and respecting all forbidden pairs. The energy of
the optimum equals the length of the represented path. Thus a longest path yields
a globally optimal state of .

Now the weights will be reduced. First any positively weighted edge is replaced:

1

|4

We will refer to the new units as “edge units”, to the original units as “vertex units”.
The resulting Hopfield net has the same global optimum as before (see the proof
of theorem 3.15). Now take a negative edge. Instead of connecting v;; to vy with
weight — 1 use a complete bipartite graph of unit weight negative edges between
the vertex unit v; ; and all adjacent edge units on one side, and v;; and all adjacent
edge units on the other side.

The new construction expresses the same constraints as before. A state of the
Hopfield net (restricted to the vertex units) that does not represent a simple path
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without forbidden pairs has energy less than 0: if some vertex unit that is on is
neighbor of less than W/2 edge units that are on, then there is a loss of at least
W/2 — 1 (caused by the threshold), and thus the state has energy less than 0. If
at least W/2 edge units are on in the neighborhood of every vertex unit that is
on, then at least (W/2)? negative edges contribute to the energy for every violated
constraint.

Now to the formal definition of the reduction. The instance mapping f maps (G, P)
to H. The solution mapping g maps a state of H which represents a simple path
without forbidden pairs (on the vertex units) to this path. Any other state is mapped
to a trivial solution to (G, P).

H and (G, P) have global optima of the same cost. A state s of H either represents
a simple path without forbidden pairs or has energy at most 0. In the former case
the path has at least the same cost for the instance (G, P) as s has for H. In the
latter case the trivial solution to (G, P) has larger cost than the state of the net.
So ¢(s, (G, P)) has at most the same performance ratio as s.

By S-reduction from MAX CIRCUIT OUTPUT. Without loss of generality an instance
of MAX CIRcUIT OUTPUT is a circuit C' made of AND and OR Gates with fan-in
2 and fan-out 2, and of NOT-gates that are only connected to inputs. Note that
monotone circuits trivialize MAX CIRCUIT OUTPUT. The circuit is given to the
reduction as a list of gates in topological order.

The Hopfield net that is going to simulate the circuit is called H and consists of
three types of units: units for the input gates, units for the internal gates, and a unit
that “decodes” the output of the circuit, i.e., represents its value as a contribution
to the energy function.

Let m denote the size of the circuit C, let W = 4"+12m"m? and L = W?2. There are
two units for every input gate 7 of the circuit: v;” and v;. They are connected by an
edge with weight —L (which ensures that they cannot be on both in an optimum).
These “input units” have threshold —1 so that one of them can be turned on with a
positive gain if both are off (all edges incident to the input units will have positive
weight).

An AND-gate is simulated by a single unit, an OR-gate by three units. These units
are connected to each other and to the units simulating the predecessors of the gate.
The weights and thresholds are determined by V = W/4" for gate 1.

v
2V -1 V-2



The single unit of an AND-graph and the lowest unit of an OR-graph will be referred
to as “gate units”. The predecessors of the depicted gate simulators are other gate
x y a negated

T resp. v, . v represents a unnegated input, v;

units or input units v ; ;

input.

The exponentially decreasing weights ensure that every gate unit computes its gate
function on the states of its predecessors, independent of the states of its successors.
W is chosen such that even the lowest of all gate units has a threshold of at least
4-2™m?—3 and is independent of the following representation of the circuit’s output.
The k + 1 units simulating the output gates Out® (where k < m) are connected to
a unit dec that “decodes their value”.

Outf Outg

Now consider a globally optimal state of the net. We can assume that all pairs of
input units have complementary states. It is possible to correct the states of gate
units in topological order (by local search): if the two predecessors of an AND-unit
are on, then the unit can be turned on; if one of them is off, then it can be turned
off. If at least one predecessor of an OR-graph is on, then one intermediate unit
of the OR-graph can be turned on and afterwards the gate unit, else they can be
turned off.

Note that the energy of a correct AND-graph is at most 1, the energy of a correct
OR-graph at most 2. Thus in the whole net, except of the edges to dec, the energy
cannot exceed 2m. A state that does not represent a correct computation of every
gate can be improved by local search. The input units have the value that maximizes
the energy. This is the value that maximizes the value encoded by the outputs of
the circuit, because this value (multiplied by m?) is added to the energy function
by the edges to dec (dec is on in any optimum). The energy of a globally optimal
state of H is O(m) + T°"" - m? when the circuit C' computes 7" (binary encoded)
on the states of the vT. The states of the v induce a globally optimal input for C.

Now to the definition of the reduction. The circuit C' is mapped by the instance
mapping [ to H. Any state of the Hopfield net is mapped by the solution mapping
¢ to the states of the input units v*.

If a state s of H has energy less than 0 then g(s,C') has a better performance ratio
(for C') than s (for H), because the circuit outputs encode nonnegative numbers only.
If s has energy at least 0, then it represents a correct computation or a computation
where additional gate units can be turned on correctly, never a computation where
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3.

a gate unit is illegally on (this would lose at least (4 - 2mm? — 3) — (2¥m?) on the
threshold of a gate unit and this loss exceeds the maximal positive energy). The
states of the v™ induce a solution to C of cost T', where T' is larger than the output
of the circuit-simulation in H. This holds because the circuit-simulation in H is
monotone (NOT-gates are implemented as negations of inputs) and no “allowed”
error of the circuit-simulation increases its output.

The energy of a state s of H is O(m) + T'm? for the circuit-simulation output
T'. Let T be the output of circuit C' on the input g(s,C). Then 7" < T. The
globally optimal output of C' and of the circuit-simulation is the same value 7.
The performance ratio of g(s, (') is (with some constants ¢, d)

Topt
R(g(s,0),0) == =0 (

dm + T°Ptm?

em + T'm?

- ) = O(R(s, H))

if 7> 0 and em~+T1"m? > 0. Otherwise it is easy to see that R(g(s,C),C) < R(s, I).

Follows from fact 2.7. and statement 2. O

Global optimization of PN-HOPFIELD is a complete problem under an approximability
preserving reduction. Thus approximation cannot be done considerably more efficient
than optimization for PN-HOPFIELD.

PN-HOPFIELD corresponds to a generalized graph cut problem.

Theorem 3.21 1. The MAX CUT problem with positive and negative weights can be

2.

solved by a Hopfield net, i.e., PN-MAX CUT<;zs PN-HOPFIELD.

PN-HOPFIELD<,,s PN-Max CUT.

Proor:

I,

o

Let G be any graph with weighted edges. Now as in theorem 3.16 the PN-MAX
CuT problem can be implemented, this time using positive and negative weights.

Given a Hopfield net H transform to PN-MAX CuT like in theorem 3.16 by using a
vertex clamped to ‘1’ and a vertex clamped to ‘0’. This “clamping” can be achieved
in PN-MAX CuT by a very large negative edge between the two vertices. All
thresholds ¢; can be transformed (like in theorem 3.16) so that they are half of the
sum of weights on edges incident to v;. This yields a PN-MAX CUT instance. O

Now we return to the consideration of local approximation. First note that the lower
bounds for the positively weighted Hopfield function are valid for PN-HOPFIELD, too. In
the case of unit weights this is all we know.

Theorem 3.22 The PN-HOPFIELD function with unit weights cannot be approximated
locally within \/n/5 in functional AC°.
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The above result is very weak since obtaining an exact solution solves a P-hard pro-
blem. If the weights are polynomial or unbounded the result can be improved.

Theorem 3.23 1. PN-HOPFIELD? is NC LS -complete via NC-LPR-reductions.
2. PN-HOPFIELD®? is PLS-complete via P-LPR-reductions.
3. A local n*-approzimation of PN-HOPFIELD? solves a P-hard problem.

4. A local 2V -approzimation of PN-HOPFIELD®? solves a PLS-hard problem (for
some € > 0).

Proor: We will show a NC-LPR-reduction (with size amplification O(n?)) from
NC'-FLIPj10q (for arbitrary k) to PN-HOPFIELD? (with weights bounded by n®®*)). Af-
terwards we show that this construction also A'C-LPR-reduces FLIP to PN-HOPFIELD“”.
Theorem 2.15 leads to statements 1. and 2. (the implicit inclusion statements are trivial).

Theorem 2.17 implies that a n?*-approximation for NCl—FLIP(;k.log solves a P-hard
problem, and that a 2¢"-approximation for FLIP solves a PLS-hard problem for some
¢ > 0. The reductions of 1. and 2. imply statements 3. and 4. via theorem 2.14, because
their size amplification is O(n?).

For the reduction first a given circuit has to be mapped to a Hopfield net with po-
lynomial weights. We can assume that this circuit has p inputs, ¢ outputs, size m, and
depth d with ¢,d = O(logm), and that the circuit consists of fan-in/fan-out 2 AND/OR
gates and of NOT gates that are connected directly to the inputs. The Hopfield net H
uses representations of the p inputs of the circuit and works out p 4 1 simulations of the
circuit, one for the “normal” input assignment (called the “original” circuit C') and one
for each possibility to flip one input variable. The idea to use such “test circuits” was
introduced (while PLS-reducing FLIP to MAX SAT) in [Kr90]. There is one test circuit
T: for every variable. The net will allow to flip a variable in the normal input assignment
ifl the corresponding test circuit has a larger output than the original circuit. This will be
done in a complicated sequence of local optimization steps. H has only local optima in
which the original circuit and all test circuits compute correctly, and the original circuit
has a larger output than any test circuit. In this situation the variables induce a locally
optimal solution to the N'C'-FLIP,,, instance.

H consists of units representing the input variables, of units representing the circuit
gates, of units decoding the outputs of the circuits, and of control units. There are 2p
“variable units” v; and w; for 1 < ¢ < p. The v; represent the “normal” input, whereas
the w; correspond to the complements of the v;. v; is read by C' and by the T} for j # 1,
w; is read by T;. Other units form the circuits C' and 7} in a similar way as in the proof
of theorem 3.20. Note that we are allowed to use weights that are exponential in the
depth of the circuits. The outputs of every circuit are connected to a vertex that decodes
them using weights exponentially large in ¢ and represents the binary encoded output as
a contribution to the energy function. There are 6 more control units for every test circuit
and variable. The net has size O(pm) = O(m?).
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Before describing the whole construction in detail we give a short explanation of the
way local search will change the state of the net towards a local optimum. It will be
possible to get into a state where every circuit computes correctly and the states of the
variable units represent some input assignment. If a circuit 7; has larger output than C',
then turning on a single “decoding” unit (called max;) gains the value of this output while
losing the value of the output of C'. maz; activates some control units, these “disconnect”
the circuits C' and T} for j # i, i.e., turn every unit in these circuits off, and flip the
variable v;. Then circuit C' will be “connected” again, C' recomputes its output and
is now maximal, maz; can be turned off. This allows to disconnect 7; and flip w; in
turn. Now the net can return to a standard situation, and the whole process can start
again—until the inputs of C' produce a locally optimal output.

Let R =4pm, S = R?, W = 4p4? . §729 [, = W?2. Note that all these numbers are
polynomially bounded in m. v; and w; are connected by an edge of weight —S, they both
have threshold —3R. Every variable unit is connected to a unit duplicating its state and
to a unit computing its negation. The first of these units is connected with weight W and
has threshold W — 1. The second of these units is connected with weight —W and has
threshold —1. In the case of v; these two units are each connected to p units duplicating
their states. This makes the state of v; and its negation available p times (for the p circuits
that may want to read it). w; is read by only one circuit and thus does not need this
duplication. The 2-p duplicating units have threshold W/(4p)—1. Their connections have
weight W/(4p). The construction is depicted below. The two successors of the variable
units will be referred to as “variable duplicators”, their successors as “input units” of the
circuits.

v, =5 w;

w—-1

P P

Suppose that v; (or w;) has some fixed state. Then local search can proceed as follows:
if v; is on, then its successor with threshold —1 can be turned off, its other successor can
be turned on. If v; is off, then its successor with threshold —1 can be turned on, its other
successor can be turned off. These two units are independent of their p successors, which
are connected to them with weight W/(4p). The states of the units under the two direct
successors of v; can be changed by local search so that they duplicate the states of their
predecessors. Note the following: if all these units are off and v; has some state (but is not
fixed), then local search leads to the situation, where the units in the left branch under v;
duplicate the state of v; and the units in the right branch under v; duplicate the negation
of the state of v;. This does not change the state of v;.
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The circuits C' and T} are placed below this construction and are connected to the
(negated or unnegated) input units, where C is connected to inputs that follow the v;
only, while T} is connected to inputs that follow w; and to those that follow v; for j # 1.
The circuits contain no further negations (NOT-gates). The gates of the circuits are
simulated by one unit for an AND gate and three units for an OR gate, where an edge
leading into a gate in depth ¢ has weight V = W/(4p - 4'). Note that on the output level
the value V is still at least W/(4p - 49) = S729. This ensures that the output gate units
are independent of the deeper decoding units. The gate simulators are:

V-1
2V —1 V-2

V-3

These gate simulation graphs can be corrected by local search from the top to the
bottom due to the exponentially decreasing weights (like in the proof of theorem 3.20).
Note that turning on any unit in these circuit simulations or in the higher variable dupli-
cation units can contribute at most 1 to the energy function, i.e., the gain from edges to
higher units minus the threshold is always at most 1. The gain from edges to lower units
is counted as the gain of these lower units.

The ¢ outputs of circuit C' are connected to a vertex maxze (which has threshold —1)
with weight 27,56 for the jth output bit (maz¢ is on in every local optimum). The outputs
of the circuit 7T} are connected to a unit maz; with weight 275 for the jth output bit.
max; has threshold S°. maz; is also connected to the output gate units of C' with weight
—215% for output j. Additionally all the maz; (not maxz¢) are fully interconnected with
weight —L on all edges. This construction allows to turn on one max; if at least one T;
has a larger output than C. The —L connections ensure that at most one maz; can be
turned on with a positive gain.

out('ly)

max;

maxc



The crucial idea of this construction is that turning on a single maxz; makes T; “carry”
the new maximal output (i.e., loses the output of C' and gains the output of 7}) as long
as C' has to be corrected and the variable v; has to be flipped. Afterwards C' “carries”
the increased output again. To implement the correction process there are 6p control
variables o?, 37,49 and o}, 81,4} for 1 <i < p.

Local search will proceed roughly in the following way: if the states of the outputs
of T; encode a larger value than those of the outputs of €, then max; can be turned on
and will start a control process that “disconnects” C' and T, (j # ¢) and the variable
duplicators of v; by edges of weight —2 leading into every unit of these. The thresholds
of the output gate units of C' and of the T} are not longer exceeded (max; is on and all
max; are off). These units can all be turned off. Now the thresholds of their predecessors
are no more exceeded and these can be turned off. In this way all units in the circuits C
and T} can be turned off from the outputs upward. When all units in the disconnected
circuits and variable duplicators are off, then the variable v; is connected to no unit that
is on, except possibly w;. The control units allow to flip v; and connect the circuit C' and
the variable duplicators of v; again (i.e., the control unit with the weight -2 edges to C
and these duplicators is turned off). C' is recomputed starting from the vector of zeroes
and thus leaving the variable unit v; unchanged. C' computes the same output as 7; and
maz; can be turned off. At this time the 7} are connected again and can be recomputed
starting from the vector of zeroes. The circuit T; can be disconnected in order to flip the
variable w;. After the recomputation of T; a new cycle can start. In this way the Hopfield
net moves to larger and larger energy, where the current maximal output dominates the
energy function and is always preserved.

The control units a?, 89,49 act in the situation when v;,w; = 1,0 or v;,w; = 0,0 (in the
following we will identify units with their states). a? is connected to max; with weight
5% to v; with weight —S, and to w; with weight —25. a? has threshold $* — 5 — R.
Additionally o is connected to all units in C' and 7} for j # 7 and to the variable
duplicators of v; with weight —2. These connections weight together some value between
0 and — R and are irrelevant for the decision whether a? can be turned on. 3? is connected
to max; with weight S*, to v; with weight —52, to w; with weight —S?, to o with weight
—25, and to all units in T}y with weight —2. 32 has threshold S* — 25 — R. 4? is
connected to all max; with weight —S*, to v; with weight —S3, to w; with weight —2R,
and to all units in 7} including the variable duplicators of w; with weight —2. ~? has

threshold —R.
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The “equivalence” stated the following propositions means that a situation contradic-
ting the statements can be improved by one or two local search steps.

Lemma 3.24 1. oV =1 iff maz; =1 and v; =1 and w; = 0.
2. ﬂ? =1 iff maz; =1 and v; = w; = 0.
3. =1 1ifmaz; =0 forall j and v; = w; = 0.

If v% = 1 then all max; must be off and v; = w; = 0, because else its threshold of
—R is not exceeded. Conversely, if maz; is off and v; = w; = 0, then 7} can be set to 1,
because its threshold is exceeded even if all other negatively connected neighbors are on.

B? =1 iff maz; = 1 and v; = w; = 0 is clear from the threshold S* — 2S5 — R. The
connections to a? and to the T} do not matter.

If o = 1 then maz; must be on and w; must be off as well as 37, otherwise its
threshold $* — S — R is not exceeded. If v; = w; = 0 then Y can be turned on, and then
the threshold of o? is not exceeded, too.

The control units o}, 81,4} act in the situation when v;,w; = 0,1 or v;,w; =1, 1. oh
is connected to maz; with weight S, to v; with weight S, and to w; with weight 25. o}
has threshold S* + 25 — R. Additionally o} is connected to all units in C' and T} for
j # 4 and to the variable duplicators of v; with weight —2. B} is connected to max; with
weight 5%, to v; with weight S2, to w; with weight 52, to o with weight —2S5, and to all
units in Tjz; with weight —2. B} has threshold 5* 425 — 25 — R. 7} is connected to all
mazx; with weight —S*, to v; with weight S%, to w; with weight 2R, and to all units in 7;
including the variable duplicators of w; with weight —2. 4} has threshold S® + R.
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Lemma 3.25 1. o =1 iff maz; =1 and v; =0 and w; = 1.
2. B =L4) marj=1 and vi=wz = 1.
8. 4t =1 iff maz; =0 forall j and vi= w; =1.

If v} = 1 then all maz; must be off and v; = w; = 1, because else its threshold of
5% 4+ R is not exceeded. Conversely, if maz; = 0 and v; = w; = 1, then 7} can be set to 1,
because its threshold is exceeded even if all other negatively connected neighbors are on.

B =1iff max; =1 and v; = w; = 1 is clear from the threshold St 90% = 95 = R

If a! =1 then maxz; must be on and w; must be on as well. B! must be off, otherwise
its threshold S* + 2S5 — R is not exceeded. If v; = w; = 1 then 3! can be turned on and
the threshold of o} is not exceeded, too.

Now the net H is completely defined.

The dynamic of local search is as follows: if the output of C' is not maximal, then
some test circuit 7} has a larger output. Turning on max; loses the value of the output
of C' on the negative edges to the output units of C'; but gains the value of the output
of T} (the difference is larger than the threshold S® of maw; because of the multiplication
of the output value by S°®). Then one «; can be turned on, the circuits C' and T}
can be turned off from the outputs upwards to the variable duplicators of v; (every unit
in the circuits receives an edge of weight —2 from «;). The variable v; flips, 3; can be
turned on, «; can be turned off, the circuit C' (and the variable duplicators of v;) can be
recomputed, the output of C' is equal to the output of 7}, and maxz; is turned off (maz; has
input O(S*) and threshold S®). Then f; can be turned off. Now all test circuits except
T; can recompute their output (and the process up to here can take place for another
variable until eventually for every variable w; = v;). Also 7; can be turned on, then T} is
disconnected, w; can be flipped, and ~; is turned off reconnecting 7;.
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Lemma 3.26 In any local optimum of H all circuits compute correctly, all variable units
satisfy v; # w;, and the value encoded by the outputs of C' is at least as large as the value
encoded by the outpuls of any other test circuil, i.e., the variable units induce a local
optimum for ./\/Cl-FLIPlog.

Consider any situation of the net supposed to be a local optimum. First assume
some connected (i.e., all control units disconnecting it are off) circuit would not compute
correctly. In this case either some unit of a variable duplicator or some gate unit would
produce this error. If a unit in a variable duplicator is wrong then either the variable unit
or its successors can be changed by local search. If one of the input units or of the gate
units in the circuits is wrong, then it can be corrected by local search. All other gate
units can be corrected from the top to the bottom. So in a local optimum the variable
duplicators have the right states and the circuits compute correctly.

Now we show that the proposition of the lemma holds. Consider a state supposed to
be locally optimal. In this situation the statements of lemma 3.24 and lemma 3.25 can
be used as real equivalences.

1. For the first case assume that some max; = 1. Clearly no other maz; is on because
of the very large negative connections between them. Now the circuit 7; must be
connected (because «; cannot be on) and therefore T; computes correctly. It is also
true that the output of T is larger than the output of C.

(a) If v;,w; = 0,1 and max; = 1 then o] can be turned on. Now all gates of C' and
T;z: can be turned off from the outputs up to the variable duplicators of v; (the
thresholds of the outputs of C' are not exceeded), leaving v; only connected to
the units a! and w; in state ‘1’. Thus v; can be turned on (v; has input S — 5
and threshold —3R). Then 3} can be turned on, o} can be turned off, and C
can be recomputed from the vector of zeroes. This leaves v; unchanged. The
new output of C' is the same as the output of 7; and thus max; can be turned

off. Hence the considered state is no local optimum. Contradiction.

(b) If v;;w; = 1,0 and max; = 1 then a? can be turned on. Now all gates of
C' and Tjz; can be turned off up to the variable duplicators leaving v; only
connected to @? in state ‘1’. Then v; can be turned off (v; has input —S and
threshold —3R), 2 can be turned on, af can be turned off, and C' can be
recomputed from the vector of zeroes. After this it is possible to turn max;
off. Contradiction.

(c) If v; = w; = e and mazx; = 1 then f can be turned on. Then «f can be
turned off and (' is connected. This implies that C' computes correctly. If C
is recomputed from the vector of zeroes then a correction does not affect v;.
Otherwise this may be the case leading to one of the cases a) and b). So both
circuits C' and T; compute correctly and on the same inputs. They have the
same output and max; can be turned off. Contradiction.
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2. Now assume for the second case that all max; are 0. Then for all variables with
v; = w; the second variable can be flipped.

(a) If v; = w; = 1 then it is possible to turn on v}, disconnect T3, flip w; to 0 (w;
has input —S + 2R and threshold —3R), turn off 4} again, and recompute 7;
from the vector of zeroes (without changing w;).

(b) If v; = w; = 0 then it is possible to turn on ~?, disconnect T;, flip w; to 1 (w;
has input —2R, threshold —3R), turn off 4? again, and recompute T; from the
vector of zeroes (without changing w;).

Thus maxz; = 0 for all ¢, all v; # w;, and all circuits are connected and compute
correctly. The output of ' is at least as large as the outputs of the T}, and these compute
the 1-flip neighbors. So the variables induce a locally optimal solution to the NC'-FLIP,,,
instance that was mapped to H.

Lemma 3.27 A local optimum of H has energy ©(S® - output(C)).

Since all gate graphs gain at most R, every variable unit gains at most R, and every-
thing else at most O(pS*) the edges at the output units of C' dominate the energy.

The reduction from N'C'-FLIP,,, consists of the described mapping f from a circuit T
to the net H. The solution mapping ¢ maps a state s of the net H to the states of those
variables v; and w; that are read by the circuit with the largest output, i.e., w; is used
when T; has the largest output.

A locally optimal state of H is mapped to the v;, and these induce a solution to the
J\/CkFLIPgOg instance T' of almost the same local performance due to lemma 3.26/3.27.

If a state s of H has energy below zero then any string is a better solution to 1" and
the local performance ratio of g(s,T') for T' is larger than the local performance ratio of
s for H.

If the energy of s is larger than zero then no severe error happens in a computation: no
— L connection is active and no unit in a circuit simulation is on which should not. Units
may be off which should be on, but this decreases the value of the circuit outputs and
hence the energy of the state, because the circuit simulation uses monotone gates only.
So the states of the variable units induce a solution to 7" with larger cost than the value
of the outputs of the circuits in the net. The inputs read by the largest circuit induce a
solution with almost the same or better performance ratio compared to the state of the
net, because the outputs dominate the energy function. Thus this is a LPR-reduction.
The reduction is computable in functional LOGSP ACE.

Now observe that exactly the same construction works for FLIP when exponential
weights are allowed. Exponential values of the parameter W are used due to the possibly
linear number of outputs and the linear depth of the given circuit. ad

We have examined the general Hopfield function. It is a “very complete” problem—
possibly one of the hardest NP optimization problems. The most interesting remaining
open question is whether this function can be approximated locally in the case of unit
weights.



4 Graph Cut problems

We will now investigate the three graph cut problems that are exactly as hard to optimize
as the three versions of the Hopfield energy function. The reductions to the cut problems
however did not preserve approximability. The situation is therefore that hardness results
for MAX CUT with nonnegative or with signed weights are valid for the N- resp. PN-
HOPFIELD function, too, whereas hardness results for the Hopfield energy function do
not generalize to the MAX CUT problems. The reductions between s,¢-MIN CUT and
P-HoOPFIELD did not preserve approximability either.

4.1 The MiNn Cur/MAX FLow Problem

The positive weight Hopfield energy function is related to the s,#-MIN CUT problem (as
shown in theorem 3.2). The reason why s,#-MIN CUT is famous is its connection to s, ¢-
MAX FLow: both problems have the same set of instances, and global optima of s, {-MIN
CuT and of s,-MAX FLOW on the same instance have the same value (see [VL90]).

Theorem 4.1 1. Global optima of s,t-MAX FLOW can be constructed in functional
RTC if all edge weights are polynomially bounded.

2. Global optima of s,t-MAX FLOW can be constructed in polynomial time in the case
of unbounded weights. Finding the value of a global optimum solves a P-complete
problem.

3. Global optima of s,t-MIN CUT can be constructed in functional RTC' if all edge
weights are polynomially bounded.

4. Global optima of s,t-MIN CUT can be constructed in polynomial time in the case
of unbounded weights. Finding the value of a global optimum solves a P-complete
problem.

5. Finding local optima of s,t-MIN CUT solves a P-complete problem in the case of un-
bounded weights, solves a LOGSPACE-complete problem in the case of polynomial
weights, and is impossible in functional AC® in the case of unit weights.

Proor:

1. In [KarRa90] an algorithm is described that constructs a global optimum of s, -
MAX FLOW in the case of polynomial weights by computing the determinant of
a polynomial size integer matrix (which contains some random numbers). It is
shown in [Pan85] that O(logn) integer matrix multiplications suffice to compute
the determinant of an n x n integer matrix. An integer matrix multiplication can be
computed in functional 7C° due to fact 2.5, thus the determinant can be computed
in functional 7C'. This algorithm for s,{-MAX FLOW implies statement 1) of the
theorem.
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. See [VLI0] and [KarRa90].

3. Given a global optimum of s,{-MAX FLOW one can can construct a global optimum
of 5,-MIN CUT by breadth first search (see [VL90]). This is possible in AC' (see
[KarRa90]).

4. An algorithm follows from 2) and the note to 3). The hardness result follows from
statement 2) and the fact that global s,t-MAX FLOW and s,t-MIN CUT optima
have the same value.

ot

. Local optima of s,#-MIN CUT are as hard to find as local optima of P-HOPFIELD
(see theorem 3.2). Theorems 3.4, 3.7, 3.5 imply the statement. O

The classical algorithms for MAX FLOW build on finding augmenting paths and in-
creasing the flow along these until no more augmenting paths exist and the obtained flow
is optimal. This can be viewed as a local search process: two flows are neighboring if
they differ by a single augmenting path. A somewhat easier neighborhood is defined by
augmenting paths that are directed forward on every edge (general augmenting paths
include backward edges where the flow is reduced). An optimal flow with respect to this
neighborhood is used as a building stone in Dinic’s MAX FLOW algorithm as well as in
other related work (see e.g. [C092]).

Definition 4.1 A blocking flow is a flow such that every path from s to t contains at
least one saturated edge.

Obviously a blocking flow is a locally optimal flow with respect to the “forward path”
neighborhood. It is unknown whether blocking flows are easier to compute than maximum
flows. The following shows that both tasks are at least not very casy.

Theorem 4.2 Approzimating a global optimum of s,t-MIN CUT, s,t-MAX FLOW, and
approzimating a s,1-BLOCKING FLOW in directed acyclic graphs within 2" (exponential
weights), n* (polynomial weights), \/n[2 (unit weights) solves a NLOGSP ACE-hard pro-

blem.

Proo¥: Approximation solves the GRAPH ACCESSIBILITY PROBLEM (lemma 3.12).
A legal s, {-blocking flow on a given directed graph of size n, indegree 2, outdegree 2 with
two special vertices s and ¢ has either value 0 (if no path from s to ¢ exists) or at least
the value of the smallest edge weight on a path from s to ¢. Edge capacities can be used
to make an arbitrarily bad approximation (with respect to the maximal allowed size of
weights) solve the accessibility problem. Choose the weights of all edges as W = n* in
the case of polynomial weights and as W = 2" in the case of exponential weights. Now
clearly a W-approximation solves the accessibility problem.

In the case of unit weights replace every edge by the following graph:



Clearly if a path from s to ¢ exists, then any blocking flow has a value of at least n,
otherwise exactly 0. The size of the graph is increased to at most N = n +2n-n. A
VN /2 < n-approximation solves the accessibility problem.

The same result is valid for the stronger s,-MAX FLOW and also for s,¢-MIN CUT:
if a path from s to ¢ exists, then the globally minimal cut has at least value n* resp. 27
resp. n, otherwise 0. ad

Global optimization of s, t--MAX FLOW and s, #-MIN CUT solves a P-complete problem
in the case of unbounded weights, so a large gap lies between the above result and the
hardness of optimization. It is unknown whether these problems can be approximated in
NC. They are pseudo-RNC problems since they can be solved in RNV C when the weights
are polynomial. But a technique similar to that applied to the KNAPSACK problem
to achieve an approximation-scheme (by dividing the weights down to polynomiality, see
[PapSt82]) does not work. The best approximations that are known work only in NC if the
depth of the input graph, i.e., the maximal length of a path from s to ¢, is polylogarithmic
(see [C092], where approximations of blocking flows are used, these approximations depend
on the depth, too). However, we can present an amplification result (similar to one known
for INDEPENDENT SET, see [PapSt82]) which says that approximation is either hard or
very easy.

Theorem 4.3 1. If s,t-MAX FLOW with unbounded weights can be approximated glo-
bally in (R)NC within a constant, then it has a (randomized) NCAS.

2. 1f s,t-MIN CUT with unbounded weights can be approximated globally in (R)NC
within a constant, then it has a (randomized) NCAS.

3. If s,1-BLOCKING FLOW with unbounded weights can be approzimated in (R)NC
within a constant, then it has a (randomized) NCAS.

PROOF: Assume that a NC algorithm A exists which produces (given a graph ) a
legal flow of at least (1 — ¢) the value of the maximum flow for some constant e. Let &
be a directed graph with weighted edges and two special vertices s and t. We can assume
that s has indegree 0 and that ¢ has outdegree 0, because otherwise we can insert new
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vertices s’ and ¢ without changing the value of a maximum flow, that are predecessor
resp. successor of s resp. ¢ and have the demanded property. It is also allowed to restrict
the choice of s and 1 to single vertices instead of subsets of the vertex set, because such
vertex subsets can be merged into a single vertex.

We will insert ¢ into itself, run A on this new graph and read off a better solution than
A normally guarantees thus yielding an approximation algorithm of improved quality.
This construction can be iterated constantly often producing approximations of every
desired constant quality, i.e., an approximation scheme.

We will identify flows F7 with their value. Let G’ be as follows: first take . Then
for every edge ¢ = (u,v) with weight w insert the graph G, i.e., replace e by G such that
u coincides with s and v with ¢. All other vertices of G are inserted as new vertices, as
well as all edges. Now the graph replacing the edge can carry exactly the maximum flow
of GG. To express the weight multiply all edges in the small copy of ¢ with w. The new
graph G (after replacing all edges by copies of () has size m(n — 2) + n for n being the
number of vertices of G and m the number of edges. The maximum flow of G is F% for
the maximum flow F),,, of (G, because every graph replacing an edge can carry wf, ...
The s vertex and the ¢ vertex of G’ (called s; and t;) are the s and ¢ vertex of the “large
copy” of (& that connects the “small copies” which replace the edges.

Now run A on (. The algorithm produces a solution with value at least (1 —¢)F? .

At least one of the small copies of G or the large copy of GG that connects these will induce
a better flow than (1 — ¢€) of the optimum. This is the new algorithm:

1. Compute G’ from G.
2. Run A on G, receive a flow F’.

3. Find the small copy of GG in GG that carries the largest flow of all small copies after
division by its corresponding edge weight w. Call this flow F,.

4. Compute a flow in G by replacing the flow through every small copy of G by an
edge flow again and by dividing the whole flow by F,. Call this flow Fj.

5. Output the maximum of {F,, F}}.

Observe that Fy, = F'/F,. F, is clearly a feasible flow in G. F} is a feasible flow in G,
too. This holds because replacing a flow in a small copy by an edge flow induces a feasible
flow, and dividing all edge flows by the same value, too. Additionally every edge in G
carries at most its weight w and at least 0: since s has indegree 0 in G it is impossible
that a small copy carries a flow from its ¢ to its s, thus the flow of any small copy (from
its s to its 1) is at least 0 and at most wF, (for the corresponding edge weight w).

The maximum of {F),, F},} is an improved approximation: If F, < /1 — ¢F,,,, then

Fr_(1=e)fl2,, —
— > max — 1 o Fmal"
'F!I B Vv L — Gﬁwmaz ‘

and the flow Fj is an improved approximation.
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If ), > /1 — €F),.» then the flow F, is an improved approximation.

Thus in every case the algorithm gives an improved approximation. Iterating the
construction a constant number of times yields a NCAS: to find a solution that is 1 — ¢
as large as the maximum k iterations suffice, where

k 1 1
— Z— P (1/2) Y en —_—— —_— y _—
1—-6=(1 e) = k="oglog (1 6) loglog(1 6)'

Observe that the same technique works for s, ¢-MIN CUT. In the case of s,-BLOCKING
FLOW observe that the same as above holds for F,,,, being the least blocking flow (ap-
proximation in the sense of local approximation of section 2.4). O

Theorem 4.4 Approxzimating s,t-MIN CUT with unbounded weights locally within 2"
solves a LOGSPACE-hard problem.

PRrROOF: Approximation of undirected s, ¢-MIN CUT solves the GRAPH ACCESSIBILITY
PROBLEM on directed acyclic graphs restricted to outdegree 1 (see theorem 3.7). Given a
directed acyclic graph G of size m with indegree at most 2 and outdegree at most 1 and
two special vertices start and acc first turn every edge around. Every vertex of the new
graph G’ has outdegree at most 2 and indegree at most 1.

The input graph for s,#-MIN CUT is described by a matrix of m? vertices v; ; where
each column is a copy of the vertices of G'. A directed edge (vj,vi) of G' is replaced by
undirected edges (v; j, vip14) for every 0 <o < m — 1. The edges between column ¢ and
i + 1 have weight 47" =", Note that every vertex of G” has degree at most 1 to the left
neighbor column and degree at most 2 to the right neighbor column.

The set s consists of all copies of acc, ¢ consists of all copies of start and all copies of
vertices with indegree 0 in GG except of acc and all vertices different from acc in column
0. Call this instance of s,t-MIN CuT G".

Now consider any feasible s, #-cut in G”. If a vertex v; ; in column ¢ is connected to a
vertex in column 7 — 1 that is on the side of s, then v; ; can be moved to that side due to
the exponentially decreasing weights. The same holds for the side of ¢, because the edges
are undirected and all edges between the sides s and ¢ count.

So in a local optimum for a vertex that is no copy of start and not in column 0 the
following holds: a vertex that is reachable by a path from the left starting at some vertex
in s is on the side of s. All other vertices are on the side of ¢, because they are reachable
by a path from the left starting at some vertex in ¢.

If no path from start to acc exists in &, then in G all copies of start are not reachable
from paths beginning at some copy of acc to the left. If this holds then in a locally optimal
cut the sides of s and ¢ are not connected to each other and the cut values 0. If on the
other hand a path from start to acc exists in (&, then at least one edge crosses every s, t-cut
with weight at least 4™ ™ > 2. O

It seems as if finding a local optimum and a global optimum of s,t-MIN CUT are
almost equally hard tasks. Global approximation seems to be not much easier. It is an
open question whether local approximation is easier.
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4.2 Max CutT and Max (S)NP

It is shown in theorem 3.16 that MAX CUT is exactly as hard to optimize as N-HOPFIELD
(see [GJT9] and [SchY91] for complexity results on MAX CUT). On the other hand it
is known that MAX CUT can be approximated very well. State of the art is a polyno-
mial time approximation algorithm that produces a solution .878 as good as the global
optimum ([GoWi94], which results in a performance ratio of 1/0.878). This improves
the 2-approximation (.5 of the optimum) known long before. On the other hand it was
shown that there is no polynomial time approximation scheme for MAX CUT and some
other problems. These problems are hard for the class MAX SNP or the class MAX NP
defined by Papadimitriou and Yannakakis ([PapY91]) with syntactical means related to
a syntactical characterization of NP given by Fagin ([Fa74]).

Fact 4.5 NP consists of all predicates on structures G which can be expressed in the
form 3S : ¢(G,S), where S is a structure (and thus the first quantifier is second order)
and ¢ is a first order formula. ¢ can be assumed to be of the form Ya3y : (x,y, G, S),
where 1 is quantifier-free.

The class of those predicates which can be expressed without the second quantifier is

called SN'P or strict NP.

(i is the “input”, S corresponds to the guess-string of a nondeterministic machine.
Let us express SAT:

AT :Veda : [(P(e,z) ANz € T)V (N(e,z) AN € T),

where ¢ denotes a clause, x a variable, T' the set of true variables. P and N encode the
instance: P(c,z) = 1 iff variable @ appears positively in clause ¢, N(c,z) = 1 iff variable
x appears negatively in clause ¢. Now to the class of optimization problems derived from
this characterization.

Definition 4.2 For each predicate Il € NP of the form 3SVax3y : (x,y, G, S) the ma-

zimization version of 1l is defined as:
max {z|3y : (z,y,G, 5)}.

The class of such optimization problems is called MAX NP. The corresponding class for
the 11 in SN'P is called MAX SNP.

In the case of MAX CUT the definition is very sensible. Consider “G is bipartite”:
AC :Ve=(u,v): [(ue CAvg€C)V(veC ANug ()

The maximization version is: maximize the number of external edges, i.e., maximize the
cut.
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Fact 4.6 The following problems are MAX SNP-complete with respect to L-reductions
(which are defined in [PapY91]):

MAX k-SAT for every k > 2, INDEPENDENT SET with constant degree, MAX CUT
(and some interesting others).

It was shown in [PapY91] that all problems in MAX NP can be approximated within
a constant in polynomial time. We will later show how to do this in functional 7C°. But
first to the existence of approximation schemes.

Fact 4.7 All problems that are MAX SNP- or MAX NP-hard via L-reductions have no
PTAS unless P = N'P.

This was among an astonishing wave of results on interactive proof systems in 1989-
1992 (for an overview see [J92]). It is proved in [AS92] and [ALMSS92]. The strategy is
very interesting. First a model of probabilistically checkable proof systems is defined, then
NP is characterized in terms of this model and afterwards related to approximation. A
probabilistically checkable proof system consists of two parties: a prover with unbounded
computational capabilities who provides a proof (e.g. that a graph is Hamiltonian) on
a tape. This tape is accessible for the second party, the verifier, who has to work in
polynomial time, accesses some of the proof (using randomness) and accepts or rejects it.
The prover always tries to create convincing proofs, but has to work off-line, i.e., cannot
be adaptive to questions of the verifier. The verifier accepts correct proofs always and
rejects wrong ones with some constant probability.

A crucial idea is to bound the number of queries and the amount of randomness the
verifier is allowed to use. The breakthrough was a characterization of NP as the set of
languages that are verifiable with O(log n) random bits and O(1) query bits to the proof.
The verifier of the proof system for a NP language accesses only a constant number of
bits drawn randomly from a polynomial length proof and is able to reject wrong proofs
in polynomial time with constant probability, while accepting every correct proof.

The connection to approximation algorithms is easy to see: there is a proof system
for any language in N'P. It is possible to decide the language (on some input) by finding
out whether a proof exists such that all of the verifiers (distinguished by their choice of
random bits) accept, or if a constant fraction of them rejects for every proof. To find this
out one can form a Boolean formula of verifyers operating on the fixed input instance.
The remaining input of every verifier is the portion of the proof it accesses. Since this
portion contains only constantly many bits every verifier can be written as a constant size
circuit. The verifiers use O(logn) random bits and so there are polynomially many of
them. This yields a polynomial length formula of constant size circuits that is satisfiable
fully (by some proof) if the input instance is in the NP language, and satisfiable only up
to a constant fraction otherwise. Thus a PTAS for the problem to maximize the number
of satisfied circuits in a formula of constant size circuits solves a NP-complete problem.
This generalizes to all MAX SNP-hard problems for the L-reductions of [PapY91].
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Theorem 4.8 All problems in MAX NP can be approximated within a constant in func-
tional TC°.

PrOOF: We first show how to do this for MAX SNP problems, and then how to extend
the algorithm to MAX NP. Let 3SVx : ¢(x, G, S) be some predicate in NP and M be
the maximization form of it. Then ¢ is a constant size formula on Boolean variables S(z)
and G(w) where z and w are projections of the vector x, and G is the input structure.
When (' is fixed, then for every x the formula ¢ is a constant size Boolean formula on
variables S(z).

There are polynomially (in the length of () many possible values of z, and thus the
first order part of the predicate can be written as a polynomial size formula of conjuncts
with each at most k variables (for some constant k): ¢1 A -+ A ¢,. The fraction of
assignments that satisfy ¢; is called f; > 27% (unsatisfiable ; are left out, so at least one
assignment to the k variables satisfies ;). A random assignment to the variables S(z)
satisfies each ¢; with probability f;, and thus satisfies expected 3= f; > m2~* conjuncts,
m is trivially an upper bound on the global optimum. This random assignment yields a
constant ratio approximation algorithm (all up to here is from [PapY91]).

It is clear that such a random assignment can be produced in functional RAC’. We
show now that k-wise independent randomness is sufficient for such an algorithm and
afterwards how to derandomize this leading to a functional 7C° algorithm. To see that
k-wise independence suffices consider the probability that a conjunct ¢; on [ < £ literals
Si,...,5 is satisfied (which is satisfiable by setting S = v for some v) by a k-wise
independent random assignment:

l
prob(¢i(z) =1) > prob (/\ oy = v])
7=1

l

= [I prob(S; =v;)

J=1

=1/2" > 1/2*.

Hence an algorithm that uses k-wise independent random variables is sufficient for a
performance ratio 1/2¥ = O(1)-approximation. To derandomize the algorithm we show
how to create n k-wise independent random variables from a polynomial size probability
space that can efficiently be searched in parallel. The following lemma is from [ABI86].

Lemma 4.9 Suppose n = 2 — 1 and k = 2t +1 < n. Then there exists a uniform

probability space Q of size 2(n + 1)" and k-wise independent random variables &, ..., ¢,
over  each of which takes the values 0 and 1 with probability %



Let " be the field GF(n+1) and denote the nonzero elements of F' by column-vectors
of length I: xy,...z,. Consider the following 1 + It by n matrix over G'F'(2):

1 1 i R
I i) I3 Ty
i 3 3 3 . 73
H=| =3 & T3 i @
J2t—1 2t—-1 2t—1 2t—1
'll $2 133 A :LTL

This is the parity check matrix of the BCH code of length n and distance 2t + 2 (see
[Ad91]). Tt is well known that any k£ = 2¢+1 columns of H are linearly independent. Now
let @ = {1,2,...,2(n+1)'} and A be the matrix where the rows are all the 2(n+1)" = 2/+!
linear combinations of the rows of H. Then the random variables & ... ¢, over ) are
defined by the 1 to nth entry of row ¢ in A after choosing i from . These random
variables are k-wise independent (see [ABIS6]).

To implement this on a 7C° circuit increase the number of variables S(z) to the next
power of 2, compute the value of the S(z) for every possible choice from Q and evaluate
the number of satisfied ¢; for this choice. This can be done in T7C° due to fact 2.5.
Then determine the choice/solution s that satisfies the most conjuncts of ¢. Output this
solution. Since this solution is the best of all it is clearly better than the expectation, and
thus:

C(s,z) > E[C(s,z)] > 1/2"m

Since finding a maximum is in 7C°, the whole circuit is. The circuit can be constructed
in functional LOGSPACE because H is computable in functional LOGSPACE given n,
and the circuits from fact 2.5 can also be constructed in functional LOGSP ACE.

Now to the problems in MAX NP. Let 35Va3dy : ¢(z,y, , S) be some predicate in
NP and M be its maximization form. For a fixed input G and some z; the formula ¢;
can either be satisfied by some y or not. Choose any y for which it is satisfiable if one
exists. Now again at least one assignment to the at most k variables S(z) satisfies ;, and
the same algorithm works as above.

Note also that the x may carry arbitrarily large positive weights (as the weights in
MAX CuUT, and that the algorithm still works (producing an output of at least 1/2% 3 w;
instead of 1/2%m). O

We have seen that MAX CUT can be approximated globally within a constant, and
this very fast. Thus the problem is also easy for local approximation. An open question
is whether MAX CUT has a NCLAS; i.e., an approximation scheme for local optima. The
existence of a PTAS was excluded by the use of methods from the area of interactive proof
systems. A generalization of these methods to local optimization seems to be difficult.
Thus it remains as interesting open problem whether MAX CUT or other problems in
MAX SNP that are hard for local search have fast parallel local approximation schemes.
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4.3 The Max CuT Problem with signed weights

When the MAX CUT problem is generalized to signed weights the difficulty appears what
to do when all weights are negative and the problem collapses to MIN CUT. To keep
the correspondence to PN-HOPFIELD as close as possible we do not define special vertex
sets s and ¢ as for MIN CuT, but allow a cut to be an arbitrary partition of the graph
into two (even empty) sets. This implies that the global optimum is always nonnegative.
The problem is equivalent to PN-HOPFIELD regarding (global and local) optimization
complexity (see theorem 3.21).

The problem has not been investigated deeply. It is unknown if the problem can be
approximated globally in polynomial time or locally in functional NC. Very recently
the algorithm of Goemans and Williamson [GoWi95] for MAX CUT has been applied to
graphs with signed weights, yielding the following:

Fact 4.10 Let W_ =3, ; wy;, where x~ = min(0,z). Then

137

1
(E[W]—-W_) > « (5 Zuuj(l —v; - V) — I/V_) "

i<j

where E[W] denotes the expected value of the cut obtained by the algorithm, the v; are an
optimal solution of the problem relazed to the reals between —1 and 1 (and thus the sum
2 Y icjwii(1 —v; - v;) is an upper bound on the globally optimal cut), and o = .878.

Of course this is not an approximation algorithm in the usual sense. We pose the
question whether PN-MAX CuUT can be approximated, and more generally, whether
simple problems that are easy to approximate have efficient approximations when weights
are allowed to be signed.



5 Conclusion

We have defined a new approach to cope with the hardness of optimization problems:
approximation of local optima. This approach could be useful when a problem cannot
be approximated globally and local search is hard, too. In the case of polynomially
bounded optima local search is clearly possible in polynomial time, but one may ask for
fast parallel algorithms. In the case of unbounded optima local search may be harder
(PLS-complete, though these problems tend to behave rather well in most practical
situations), and one could look for polynomial time algorithms. Since the structural
property of local optimality is seldom of interest local approximations might have some
practical value. Most local search approaches to optimization, like simulated annealing,
are heuristics to find good solutions, and do not search local optima for their own sake.

The notion of local approximability is also of some theoretical interest. The approxi-
mations are very weak (we demand from a local approximation algorithm to produce a
solution almost as good as the worst nonnegative cost local optimum, see definition 2.16)
and should allow very fast parallel algorithms in some cases. It would be interesting to
find out whether the relation between local search and local approximation is analogous
to that between global optimization and global approximation. A question related to this
is whether MAX CUT has a local approximation scheme. It should be possible to create
a theory parallel to the theory of global approximation investigating such questions in
order to understand the nature of optimization problems more deeply.

One first step towards this is the introduction of a reduction. We proposed a special
kind of “local performance ratio preserving reduction” (definition 2.17) and showed that
complete local search problems under this reduction exist (theorem 2.15). These problems
cannot, be approximated locally more efficient than optimized locally (theorem 2.17). This
was a non-surprising correspondence to the theory of global approximation. Intuitively
there should be the same approximation degrees as in the case of global approximation:
approximation schemes, constant approximations, etc. Unfortunately we were not yet able
to find a result strengthening the belief in a concrete practical value of local approximation.
There is a candidate for such a problem: the N-HOPFIELD function. This is a difficult
problem for global optimization, global approximation, and local optimization (see section
3.2). It would be very nice to come up with an efficient local approximation algorithm
for this problem.

After introducing the notion of local approximation we investigated the complexity of
the Hopfield energy function under the four approaches global optimization, global appro-
ximation, local optimization, and local approximation. The consideration of this function
was well motivated because local optima are of special interest here: the Hopfield energy
function defines a neural network that determines local optima automatically and has wi-
dely been applied to optimization problems. We showed that the Hopfield energy function
on the domain {0, 1} is very hard—it is complete for the class of all global maximization
problems (in the case of unit weights for all global maximization problems with polynomi-
ally bounded optima) and complete for the PLS resp. N'C' LS maximization problems
(unbounded resp. polynomially bounded optima) via approximability preserving reduc-
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tions (theorem 3.20/23). This implies that the general Hopfield energy function is able
to express all AP maximization problems such that local and global approximability is
preserved. Additionally the Hopfield energy function defines neural networks performing
local search-——thus one can say that it is an interesting programming language of “full”
complexity.

We also considered restricted versions of the general Hopfield energy function. The
version with positive weights only is an easy to solve variant having a fast parallel global
optimization algorithm (polynomial weights) and a polynomial time global optimization
algorithm (unbounded weights). An interesting structural property of this function is that
it is almost equally hard to optimize locally as to optimize globally. The version of the
Hopfield energy function with negative weights only is more mysterious: it is very hard
for all the three approaches we considered different from local approximation. A most
interesting question is whether the problem can be approximated locally in NC. Both
restricted versions can be viewed as variants which allow a programming style adopted to
the complexity of the problem one wants to model. The Hopfield energy function can be
seen as an interesting flexible unification of optimization problems.

In section 4 we examined graph cut problems that are exactly as hard to optimize as
the three versions of the Hopfield energy function. While s, #-MIN CUT and P-HOPFIELD
possibly have the same approximation complexity this is wrong for MAX CUT and N-
HoprrieLD: MAX CUT can be approximated globally within a constant in functional
7C° N-HOPFIELD cannot be approximated globally in polynomial time within n¢ for
some constant € > 0 (theorems 4.8 and 3.17). A question arising from the consideration
of a generalized MAX CUT problem is how well problems with signed weights can be
approximated. This has not been discussed deeply (see [Ka92] for a catalogue of results
on approximation complexity). One example of dramatically increased hardness is PN-
HoprieLp. This is equivalent to MAX 2-DNF with signed weights on its conjunctive
clauses and only positive occurrences of variables. The normal MAX 2-DNF is a member
of MAX SNP and can thus be approximated globally within a constant in functional
T7C° due to theorem 4.8, while the problem with signed weights cannot be approximated
efficiently at all (theorem 3.23).

There are many open questions worthy of further consideration:

e Has MaX CuT a NC local approximation scheme (NCLAS)?
e How well can PN-MAX CuUT be approximated?
o Can s,t-MAX FLOW with exponential weights be approximated in N'C?

Can the results in the table on page 25 be tightened?

— Try to find a local approximation for N-HOPFIELD!!l or a hardness result for
PN-HoPFIELD

— Can P-HOPFIELD“? be approximated (locally or globally) in NC?

Are there hard problems (for local search and global approximation) with efficient
local approximations? We still have to come up with the answer.
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A Definitions of Optimization Problems

Here we provide exact definitions of the optimization problems considered in this paper. 7
denotes the set of instances, S the set of feasible solutions, N the considered neighborhood,
C' the cost function, opt indicates whether C' has to be minimized or maximized. The
feasibility predicate P can easily be derived from S.

[1] P-HOPFIELD
T = {H|H = {(wi;)i<ij<n> (tirgicn); wij = wj; > 0}
S(H) ={0,1}"
N =1-Alip
C(s, H) = ;0 wi j5i8; — X2 s
opl = max
2] N-HOPFIELD
I ={H[H = ((wi;)1<ij<n, (ti)1icn); wij = wji < 0}
S(H)={0,1}"
N =1-flip
C(8, H) = 35 Wi ;885 — 2o tisi
opt = max
(3] PN-HOPFIELD
I ={H|H = ((wi;)1<ij<n, (ti)1gicn); wij = Wi}
S(H)=1{0,1}"
N =1-Aflip
Cls, H) = Y ieqwigsiss — 2o tibi
opt = max
[4] s,t-MIN CUT
T = {{(G, s, 1)|G = (wij))i<ij<n; Wiy = 058,8 € {1,...,n};s,t # 0}
S(G,s,t)={y e {0,1}"|Vies:y;=1,Viet:y, =0}
N =1-Aflip
C(Lf/a <G, 5>t>) = Z(z’,j) w(i,]’)yi(l - 3/]‘)
opt = min
[5] Max CuT
I ={G|G = (wyj)i<ejen; wij = w2 0}
S(G) ={0,1}" — {0", 1"}
N =1-flip
Cls,G) = Licjwijlsi(l — ;) + (1 — si)s;]

opl = max



[6]

[10]

PN-Max Cut

T = {G|G = (wi)1<ijsn; wij = Wi}

S(G) = {0, 1}

N =1-flip

C(5,G) = Yie; wij[si(1 = s5) + (1 — 54)s;]

opl = max

s,1-MaX FLow

T =G 5 |G = (Wi hizigeni Wiy = —Wiii 38 S 11;0a: ;0150 U}

NG, 8,6) = {mlm = (w4 i 583 V0,0 = |mag] & i ghmig = 0 gy > Omy € 0 5
Wis <0 By = V0 E8 VbR T, By = LpBint

Ni(z, (G, s,t)) = {yly € S(G,s,1);yi; — ij = zij € {0,¢,—c}; the z;; > 0 form a
simple path from s to ¢ in the graph of nonzero weighted edges}. For this neighbor-
hood (“augmenting paths”) local implies global optimality (see [VL.90]).

Ny(z, (G, s,t)) = {yly € S(G,s,t);9i; — xi; = zij € {0,¢,—c}; the z;; > 0 form a
simple path from s to ¢ in the graph of positively weighted edges}. Local optima
for Ny are called “blocking flows”.

Cla, (Gys,)) = Yies 25 i

opt = max

INDEPENDENT SET

7 = {G|G = (V, E) is an undirected graph}
S(@)={se{0,1}*|s; =5, =1= {s;,3;} ¢ E}

N =1-flip

C(s,G) =38

opl = max

LONGEST PATH WITH FORBIDDEN PAIRS

T = {(G, P)|G = (V, E) is a directed graph; P C V?}
S(G, P) = {(i1,...,1)| the vertices v;, form a simple path in G without traversing
both vertices of a pair in P}

C((i1,...,t), (G, P)) =k

opl = max

MAX SAT

I ={F|F =(V,D);V is a set of variables, D a set of disjunctive clauses of negated
and unnegated variables}

S(F)={D"C D| an assignment to V exists so that D’ is satisfied }

N =1-flip

C(D',F)=|D|

opl = max
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[11]

13]

[14]

MAX K-SAT

I ={F|F =(V,D);V is a set of variables, D a set of disjunctive clauses of negated
and unnegated variables having length at most k}

S(F) ={D" C D] an assignment to V exists so that D’ is satisfied }

N =1-lip

C(D,F)=|D|

opl = max

MaXx DNF

T ={F|F =(V,D);V is aset of variables, D a set of conjunctive clauses of negated
and unnegated variables}

S(F) = {D" C D] an assignment to V exists so that D’ is satisfied }

N =1-flip

C(D',F)=|D|

opl = max

MAX K-DNF

I ={F|F =(V,D);V is a set of variables, D a set of conjunctive clauses of negated
and unnegated variables having length at most k}

S(F)={D"C D| an assignment to V exists so that D’ is satisfied }

N =1-flip

(D, ) = 1|

opl = max

Max CirculT OUTPUT
T = {T|T is circuit made of fan-in 2 and fan-out 2 AND/OR/NOT gates, 7" has p

inputs and ¢ outputs outiT.}
S(T) = {0,1}7

N =1-flip

C(s,T) = iZg out (s)2°
opt = max

T'| then the problem is called NC°-MaAX CIRCUIT

If the depth is restricted to log*
OUTPUT.

The local optimization version of these problems is called [N'C®-] FLIP.
It g <Fk-log|T

then the local optimization version is called [N C*] FLIP ) jop
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